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Abstract—Interferometric synthetic aperture radar (InSAR)
data provides reflectivity, interferometric phase and coherence
images, which are paramount to scene interpretation or low-level
processing tasks such as segmentation and 3D reconstruction.
These images are estimated in practice from hermitian product
on local windows. These windows lead to biases and resolution
losses due to local heterogeneity caused by edges and textures.
This paper proposes a non-local approach for the joint estimation
of the reflectivity, the interferometric phase and the coherence
images from an interferometric pair of co-registered single-look
complex (SLC) SAR images. Non-local techniques are known to
efficiently reduce noise while preserving structures by performing
a weighted averaging of similar pixels. Two pixels are considered
similar if the surrounding image patches are ”resembling”. Patch-
similarity is usually defined as the Euclidean distance between the
vectors of graylevels. In this paper a statistically grounded patch-
similarity criterion suitable to SLC images is derived. A weighted
maximum likelihood estimation of the SAR interferogram is then
computed with weights derived in a data-driven way. Weights
are defined from intensity and interferometric phase, and are
iteratively refined based both on the similarity between noisy
patches and on the similarity of patches from the previous
estimate. The efficiency of this new interferogram construction
technique is illustrated both qualitatively and quantitatively on
synthetic and true data.

Index Terms—Estimation, Non-local means, Interferometric
Synthetic Aperture Radar (InSAR)

I. INTRODUCTION

INTERFEROMETRIC synthetic aperture radar (InSAR)

aims to recover information about heights or displacements

in a scene. Two SAR complex images are sensed by two

parallel-passes separated by a spatial baseline. The amplitude

components provide information on the reflectivity, and, after

co-registration of the two images, the phase difference is

directly related to the path delay between the two waves. This

phase difference, denoted as interferometric phase, can be used

to recover the height or the movement [1]. Interferences of

elementary scatterers causes speckle effects on the measured

amplitudes of the backscattered waves. Due to temporal and

spatial variations between the two acquisitions, the speckle

components between the two acquisitions (i.e. the underlying

scattering processes) present a small decorrelation which af-

fects the interferometric phase [2]. The coherence between
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the two acquisitions appears then as a crucial indicator of

the reliability of the interferometric phase. This paper focuses

on the joint estimation of the three InSAR parameters: the

reflectivity of the scene, the interferometric phase and the

coherence. Note that the orbital component (flat earth and

orbital inaccuracies) of the interferometric phase is assumed

to have been previously removed from the phase images to

ensure the phase stationarity in homogeneous areas.

An interferometric pair of co-registered single-look complex

(SLC) SAR images can be modeled on each pixel with

a joint parametric distribution grounded on three physical

parameters: the reflectivities, the actual interferometric phase

and the coherence. Let z and z′ be the complex values of two

corresponding pixels in the two SLC images. According to

Goodman’s model [3], z and z′ follow a zero-mean complex

circular Gaussian distribution:

p(z, z′|Σ) =
1

π2det(Σ)
exp

[

− (z∗z′∗)Σ−1

(
z
z′

)]

(1)

with Σ a 2× 2 covariance matrix, which can be decomposed

as follows:

Σ = E

{(
z
z′

)

(z∗z′∗)

}

=

(
R

√
RR′Dejβ

√
RR′De−jβ R′

)

(2)

where R and R′ are the underlying reflectivities, β the

actual interferometric phase, D the coherence between the two

acquisitions and E denotes the mathematical expectation. Note

that we use the term reflectivity but R is actually a quantity

linked to the backscattering coefficient and thus to the radar

cross section per unit volume [4].

Numerous estimators have been proposed to estimate the co-

variance matrix Σ. The majority have been specially designed

to estimate only one of the three parameters:

• Amplitude denoising is usually achieved by using spa-

tially adaptive filtering based on local statistics in order

to cope with the signal-dependent multiplicative speckle

noise [5]–[9]. We refer the reader to the survey of R.

Touzi [10] for a deeper analysis of such methods. The

most recent approaches use parametric distributions based

wavelet soft-thresholding, with spatially adaptive filtering

in the wavelet domain [11], [12], or with logarithmically

transformed amplitude [13]–[15]. Non-local estimation of

the reflectivity has also been proposed in [16], [17].

• Interferometric phase restoration is usually expressed as

a problem of phase denoising and phase unwrapping.

This paper focuses only on the first problem namely
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the estimation of the noise-free wrapped interferometric

phase. Recent techniques achieve this goal by finding

the best local polynomial approximation in an adaptive

window [18]–[20].

• The coherence is an indicator of the reliability of the

phase quality but is also widely used to detect temporal

changes in remote sensing applications. The main prob-

lem in the coherence estimation is the introduction of a

bias towards higher values due to the limited number of

averaged samples. Different methods have been proposed

to improve the quality of the estimation in terms of bias

and variance [21], [22]. A recent approach, proposed by

López Martı́nez et al., is based on wavelet transform [23].

Other estimators take advantage of Goodman’s model to

provide a joint estimation of the three parameters. The majority

of them are based on local statistics, and therefore affect

the spatial resolution while few estimators achieve this goal

without significant loss of resolution:

• The usual parameter estimation approach is the direct

application of the spatial stationarity principle. It con-

siders noisy samples in a window centered on a given

pixel as all following the distribution of that pixel. This

leads to the boxcar filter which locally estimates the

complex covariance matrix Σ over a sliding window.

Known as complex multi-looking, this operation is widely

used in practice to provide an estimate of the reflectivity,

the actual interferometric phase and the coherence. The

fundamental limitation of this technique comes from the

loss of resolution on the estimated images, since the

same smoothing effect is equally applied to homogeneous

regions, and to edges or textured zones. Moreover, as

mentioned above, the coherence estimate is biased and

finally overestimated due to the limited number of sam-

ples in the local window.

• In [24], [25], Lee et al. proposed to use adaptive filter-

ing for polarimetric and interferometric SAR denoising.

Instead of estimating the parameters over a rectangular

sliding window, a directional window is locally selected

among eight edge-aligned windows, according to the

local gradient of the amplitude images. A complex covari-

ance matrix is estimated over the obtained window which

is used in the linear minimum mean square error esti-

mator to obtain the denoised covariance matrix Σ. This

preserves edge structures, since values of pixels on each

side of the edge are never combined together, avoiding

then smoothing effects. Unfortunately, this method tends

to leave a high variance in homogeneous area and create

some undesired artifacts.

• Intensity-driven adaptive-neighborhood (IDAN) tech-

nique has been proposed in [26] for polarimetric and

interferometric SAR parameter estimation. Following the

idea of filtering over directional windows, IDAN per-

forms a complex multi-looking operation on an adaptive

neighborhood. This adaptive neighborhood is constructed

with a region growing algorithm where the most similar

adjacent pixels are selected iteratively according to their

intensity values. The adaptive neighborhood aims to se-

lect as many pixels as possible, all following the same sta-

tistical population as the considered pixel. This decreases

the resolution loss in the estimation since noisy values

coming from other populations are rejected. Due to its

window-shape adaptivity, IDAN achieves the best trade-

off between residual noise and resolution loss among

window-based methods. However, due to its connectivity

constraint, IDAN leaves a high variance in regions where

there are only few adjacent similar pixels.

Rather than restricting the similar pixels to belong to a

local neighborhood such as rectangular windows, directional

windows or spatially connected components, we choose to

also consider pixels that are far apart. Indeed, SAR images

have usually high resolutions compared to the scale of the

topography and deformation effects, then most of the patterns

can occur several times. Our idea, based on the non-local

means filter (NL means) [27], is to exploit these redundant

patterns to select a large set of pixels to combine for the

estimation of each given pixel. A pixel is assumed to come

from the same statistical population as the given pixel if the

patches that surround the two pixels are similar. This patch-

based estimator can be considered as non-local since pixel

values somewhat far apart can be averaged together, depending

on the surrounding patch-similarity. The non-local interfer-

ometric SAR (NL-InSAR) estimator is based on the patch-

based estimator introduced in [17] for image denoising. Instead

of combining pixels from a binary set, a membership value

is computed according to a patch-based similarity criterion.

This membership value is then used in a weighted maximum

likelihood estimator to produce the desired parameters. Unlike

directional windows based filtering and IDAN which use only

the intensity to select the suitable samples, NL-InSAR uses a

probabilistic criterion based on both the intensities and the

interferometric phases that surround two given patches (it

is assumed that the orbital component has been previously

removed from the phase images). Moreover, the estimation

is refined iteratively by including the similarity between pre-

estimated patches of the InSAR parameters. This iterative

process noticeably improves the estimation performances.

II. NON-LOCAL INSAR ESTIMATION

A. Weighted maximum likelihood estimation

This section presents the method proposed for NL-InSAR to

estimate the three parameters R, β and D. It seems reasonable

to consider equal the (true) reflectivities of each pair of

corresponding pixels, i.e R = R′ in (2). This hypothesis is

naturally verified in regions with good coherence. By reducing

the number of degrees of freedom (from 4 to 3 unknowns),

the estimation variance is improved. Denoising techniques

must trade-off variance reduction and resolution preservation.

As the sample size is restricted by resolution preservation

considerations, it is desirable to reduce the variance with such

a hypothesis. Let A = |z| and A′ = |z′| be the amplitudes

and φ = arg (zz′∗) the noisy interferometric phase which is

compensated for the flat earth phase. From (1) and (2), with

the constraint R = R′, the InSAR observations are related to
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the InSAR parameters R,D and β by [28]:

p(A,A′, φ|R,D, β) =
2AA′

πR2(1−D2)
×

exp

(

−A
2 +A′2 − 2DAA′ cos(φ− β)

R(1−D2)

)

. (3)

NL-InSAR uses the weighted maximum likelihood estimator

(WMLE) which can be interpreted as an extension of the

weighted average performed in the NL means [17]. For-

mally, the WMLE defines at each site s the estimate Θ̂s =
(R̂s, β̂s, D̂s) as:

Θ̂s = arg max
Θ

∑

t

w(s, t) log p(Ot|Θ) (4)

where Ot = (At, A
′
t, φt) is the observation at site t and

w(s, t) > 0 is a data-driven weight. WMLE is known to

reduce the mean squared error by reducing the variance of

the estimate at the cost of a bias introduced by samples that

follow a distribution with parameters Θt different to Θs [29].

The WMLE framework has already been applied successfully

to image denoising in [30] and to non-local estimation in [17].

For InSAR data, the maximum likelihood estimator of the

covariance matrix Σ is well-known to be the sample estimate

of the covariance matrix. The parameters R, R′, β and D
are then given by term identification which leads to compute

the sample estimate of the complex cross-correlation. Seymour

and Cumming in [31] derived the maximum likelihood esti-

mator of (3) which differs from the classical sample estimate

since it assumes that R = R′. From their work, we extend

their formulation to the case of WMLE, which is given, for

Θs = (Rs, βs, Ds) and Ot = (At, A
′
t, φt), by:

R̂s =
a

N
,

β̂s = − argx,

D̂s =
|x|
a







(5)

with a =
∑

t

w(s, t)
|zt|2 + |z′t|2

2
,

x =
∑

t

w(s, t) ztz
′
t
∗
,

N =
∑

t

w(s, t).







(6)

Equation (5) defines the same estimator of reflectivity

and phase as the sample estimator. The coherence esti-

mator differs in the denominator: a in equation (5), and
√∑

t w(s, t)|zt|2|z′t|2 in the sample estimate. When the as-

sumption R = R′ holds, it is shown in [31] that their estimator

of the coherence (and thus that defined in (5)) is more efficient

than the classical sample estimate. For instance, an estimate

of the coherence can be obtained without averaging in a

local neighbourhood whereas the sample estimator requires

to average at least two pixels to define a coherence.

In [17], we take inspiration of the non-local means algorithm

to define the weights w(s, t). The two observationsOs and Ot

are considered to come from the same statistical population, i.e

Θs = Θt, provided that the patches ∆s and ∆t that surround

the two pixels s and t are similar. Figure 1 illustrates the pro-

cedure. At each site s, the pixels t are inspected sequentially

Fig. 1. WMLE combines for each site s the information of pixels t according
to the similarity between two patches ∆s and ∆t centered respectively around
the sites s and t.

to produce a weight by comparing the two noisy patches ∆s

and ∆t. Once all weights w(s, t) are computed, the WMLE is

obtained according to (4). Note that for complexity reasons,

the pixels t are restricted to a large window Ws centered

around the site s. In the non-local means the similarity between

the two patches ∆s and ∆t is given by an Euclidean distance

of the intensity values. On InSAR data, such a distance cannot

be used directly since it does not consider the statistical

nature of the multi-dimensional observations. In [17], we

showed that the Euclidean distance can be substituted by a

similarity criterion grounded on statistical considerations for

non-additive or non-Gaussian noises. The same approach can

be applied here for InSAR data.

B. Similarity between noisy patches

We define patch similarity as a measure of how likely

the two patches O∆s
and O∆p

could be considered as two

noisy realizations of the same noiseless patch Θ∆. Given the

independence assumption (i.e. noise is considered uncorre-

lated), patch similarity can be computed pixelwise. The weight

w(s, t) is then set as a function of the likelihood [17]:

w(s, t) , p(O∆s
,O∆t

|Θ∆s
= Θ∆p

= Θ∆)1/h (7)

=
∏

k

p(Os,k,Ot,k|Θs,k = Θt,k)1/h (8)

where h is a filtering parameter (a larger h leads to less

discriminative weights), and s,k and t,k denote the k-th pixel

in each patch ∆s and ∆t. For reason of readability, the pixels

s,k and t,k will be denoted respectively by 1 and 2 in the

following.

As the “true” values Θ are unknown, the similarity like-

lihood p(O1,O2|Θ1 = Θ2) is computed by considering all

possible values for Θ (under a uniform prior):
∫

p(O1|Θ1 = Θ)p(O2|Θ2 = Θ)dΘ. (9)

Unfortunately, (9) is not necessarily scale-invariant which is

not satisfying to model the weights in the WMLE. However,

its definition depends on the chosen observation space of

O. The choice of O affects the similarity likelihood by a

multiplicative factor (namely the Jacobian). Then, the search of
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Fig. 2. Similarity log-likelihood with respect to A1 and φ1 for the given
values A′

1
, A2, A′

2
and φ2.

a suitable observation space can lead to obtain a scale-invariant

similarity likelihood. Given the probability density function of

the original observation O and Φ a mapping function from the

original observation space to the suitable observation space,

the similarity likelihood can be defined as:

p(O1,O2|Θ1 = Θ2) =

∣
∣
∣
∣

dΦ

dO1
(O1)

∣
∣
∣
∣

−1 ∣
∣
∣
∣

dΦ

dO2
(O2)

∣
∣
∣
∣

−1

×
∫

p(O1|Θ1 = Θ)p(O2|Θ2 = Θ)dΘ. (10)

In case of InSAR data, a simple dimensional analysis shows

that choosing Φ : (A,A′, φ) 7→ (
√
A,
√
A′, φ) gives a

scale-invariant similarity criterion. According to this, equation

(10) and appendix A, the similarity likelihood, for Ok =
(Ak, A

′
k, φk), k = 1..2, is given by:

p(O1,O2|Θ1 = Θ2) =
√

C
B

3(A+ B
A

√

B
A− B − arcsin

√

B
A

)

(11)

with A = (A2
1 +A′

1
2 +A2

2 +A′
2
2)2,

B = 4(A2
1A

′
1
2 +A2

2A
′
2
2 + 2A1A

′
1A2A

′
2 cos(φ1 − φ2)),

C = A1A
′
1A2A

′
2.

Figure 2 represents the similarity likelihood defined in (11)

with respect to the values of A1 and φ1 for given values

of A′
1, A2, A

′
2 and φ2. To emphasize the variations of the

similarity likelihood, the negative logarithm of the similarity

likelihood − log f(O1,O2|Θ1 = Θ2) is plotted. The criterion

is minimum when observed data are identical: A1 = A2,

A′
1 = A′

2 and φ1 = φ2. Moreover, this criterion manages well

with the phase wrapping, without creating discontinuities when

φ1 jumps from −π to π due to wrapping. For a given value of

A1, the criterion is minimum when φ1 and φ2 are in-phase and

maximum when they are out-of-phase. An interesting property

of the similarity likelihood is that for a given pair of observed

phases φ1 and φ2, the criterion is more discriminant when the

(a)

(b)

Fig. 3. Symmetric Kullback-Leibler divergence with respect to (a) R̂1 and

β̂1 for the given values of R̂2, β̂2 with D̂1 = D̂2 = 0.7, and (b) D̂1 and

β̂1 for the given values of β̂2, D̂2 with R̂1 = R̂2.

observed amplitudes are closer, and is less discriminant when

the amplitudes differ.

C. Similarity between pre-estimated patches

In [17], it has been proposed to refine the weights iteratively

by using at iteration i the previously estimated parameters

Θ̂i−1. Instead of approaching the similarity likelihood, we try

to approach the a posteriori probability defined by the Bayes

relation:

p(Θ1 = Θ2|O) ∝ p(O1,O2|Θ1 = Θ2)
︸ ︷︷ ︸

likelihood term

× p(Θ1 = Θ2)
︸ ︷︷ ︸

prior term

(12)

The idea is to use the pre-estimated image Θ̂i−1 to measure the

validity of the hypothesis Θ1 = Θ2. The equality Θ1 = Θ2 is

assumed to be more likely to hold as the data distributions with

parameters Θ̂i−1
1 and Θ̂i−1

2 get closer. Polzehl and Spokoiny

showed that the Kullback-Leibler divergence between these

two data distributions provides a statistic test of the hypothesis

Θ1 = Θ2 [30]. The prior term is defined by a symmetrical
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version of the Kullback-Leibler divergence over an exponential

decay function:

p(Θ1 = Θ2) ∝ exp

[

− 1

T
SDKL(Θ̂i−1

1 , Θ̂i−1
2 )

]

where SDKL(Θ̂i−1
1 , Θ̂i−1

2 ) =
∫ (

p(O|Θ̂i−1
1 )− p(O|Θ̂i−1

2 )
)

log
p(O|Θ̂i−1

1 )

p(O|Θ̂i−1
2 )

dO (13)

and T > 0 is a positive real value. The parameters T and h act

as dual parameters to balance the trade-off between the noise

reduction and the fidelity of the estimate [30]. According to

appendix B, the symmetrical Kullback-Leibler divergence in

(13), for Θ̂k =
(

R̂k, β̂k, D̂k

)

, k = 1..2, is given by:

SDKL(Θ̂1, Θ̂2) =
4

π

[

R̂1

R̂2

(

1− D̂1D̂2 cos(β̂1 − β̂2)

1− D̂2
2

)

+

R̂2

R̂1

(

1− D̂1D̂2 cos(β̂1 − β̂2)

1− D̂2
1

)

− 2

]

.

(14)

Figure 3 represents the symmetric Kullback-Leibler diver-

gence defined in (14). In 3.a, the variations are given with

respect to the values of R̂1 and β̂1, for given values of R̂2

and β̂2 with D̂1 = D̂2 = 0.7. In 3.b, the variations are given

with respect to the values of β̂1 and D̂1, for given values of

β̂2 and D̂2 with R̂1 = R̂2. The criterion decreases when all

parameters at pixel 1 get closer to the parameters at pixel 2

and becomes null when the parameters are equal. Moreover,

this criterion manages well with the phase wrapping, without

creating discontinuities when β̂1 moves from −π to π. For a
given value of R̂1, the criterion is minimum when β̂1 and β̂2

are in-phase and maximum when they are out-of-phase. Note

the satisfying behavior of the similarity criterion: the better

the coherence (i.e., closer to 1), the larger the phase similarity,

since phases are then more reliable.

D. Enforcing a minimum amount of smoothing

It is desirable to enforce a minimum amount of smoothing

(i.e. variance reduction) in the denoising technique. In an

image, some patches are (almost) unique (i.e. not found else-

where inside the search window). The direct application of the

algorithm would produce highly noisy estimates for the central

value of these patches since the weighted maximum likelihood

estimation would be computed over too few samples. In [17]

this was not an issue for amplitude denoising. When consid-

ering iterative joint amplitude-phase-coherence estimation, the

high variance of the estimator for “rare” patches leads to a

decrease of the similarity between pre-estimated patches with

the iterations. At the algorithm end, the resulting denoised

images contain regions of high residual variance.

To guarantee a minimum amount of smoothing, and there-

fore limit the variance of the estimation, we propose to

estimate the equivalent number of looks of the denoised pixels.

Due to our non-local (data driven) approach, the equivalent

number of looks varies from one pixel to another. It depends

on the number of similar patches found in the search window,

and can be approximated, for each pixel s, by:

L̂s =
(
∑

t w(s, t))
2

∑

t w(s, t)2
(15)

according to the variance reduction of a weighted average

for the reflectivity and [20] for the interferometric phase.

To enforce a minimum amount of smoothing, we suggest to

redefine the weights w(s, t) in the cases where the equivalent

number of looks L̂s falls below a given threshold Lmin. An

option is to redistribute equally the weights of the Lmin

most similar patches whenever L̂s < Lmin. “Rare” patches

often contain a bright scatterer. To prevent from biasing the

estimation, we propose to restrict the selection of the Lmin

patches to those whose central value is not too bright compared

to that of the reference patch, following the ideas of [32]–[34].

The correction of the weights can be performed as follows:

• Compute L̂s for each pixel s,
• If L̂s < Lmin, redistribute the Lmin highest weights:

– Create a vector w containing all the weights w(s, t)
such that At < 2As,

– Sort the vector w in descending order,

– Redistribute equally the weights of the Lmin most

similar pixels:

wk ←
1

Lmin

Lmin∑

l=1

wl ∀k ∈ 1..Lmin (16)

III. ALGORITHM

This section describes the whole procedure used in NL-

InSAR. At each site s, the pixels t present in the search

window Ws are inspected sequentially to produce a weight

by comparing two surrounding patches ∆s and ∆t. For each

corresponding pixels s,k and t,k in ∆s and ∆t, the similarity is

computed by comparing noisy observationsOs,k andOt,k (11)

and the pre-estimated parameters Θ̂i−1
s,k and Θ̂i−1

t,k (14). These

similarities are aggregated to produce the weights w(s, t). In
practice, the logarithm of the weights is computed to limit

numerical errors. The weight w(s, t) is then used to increment

the accumulators a, x andN (6). Once all weights are obtained

for each site t, the minimum noise reduction procedure is

performed (Section II-D) before computing the parameters

Θ̂i
s (5). The procedure is performed iteratively. Indeed, at the

end of the iteration i − 1, the estimated parameters provide

the pre-estimated parameters Θ̂i−1 used at iteration i. The
procedure is repeated until there is no more change between

two consecutive estimates. In practice, the first pre-estimates

can be chosen as constant parameter images, i.e. with constant

reflectivity, phase and coherence. According to (12), (13) and

(14), this is equivalent to performing the first iteration of NL-

InSAR with weights based only on the likelihood term. Finally,

at least ten iterations have to be performed to reach the best

estimate.

The pseudo-code of NL-InSAR is given in Figure 4. The

algorithm complexity is O(|Ω||W ||∆|) where |Ω|, |W | and
|∆| are respectively the image size, the search window size

and the similarity patch-size. Several optimizations of the
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Algorithm Non Local InSAR (NL-InSAR)

Input: O = (A, A′, φ) and Θ̂i−1 =
(

R̂i−1, β̂i−1, D̂i−1

)

Output: Θ̂i =
(

R̂i, β̂i, D̂i
)

for all pixels s of the image do

Initialize the accumulators a, x and N to zero

for all pixels t in Ws do

log w(s, t)← 0
for all pixels s, k and t, k in ∆s and ∆t do

Compute f(Os,k,Ot,k | Θs,k = Θt,k)
⊲ use eq. (11)

Compute SDKL(Θ̂i−1

s,k , Θ̂i−1

t,k ) ⊲ use eq. (14)

log w(s, t)← log w(s, t)
+ 1

h
log f(Os,k,Ot,k | Θs,k = Θt,k)

− 1

T
SDKL(Θ̂i−1

s,k , Θ̂i−1

t,k )
end for

Increment the accumulators a, x and N

⊲ use eq. (6)

end for

Insure a minimum noise reduction ⊲ see sec. II-D

Compute R̂i
s, β̂i

s and D̂i
s ⊲ use eq. (5)

end for

return
(

R̂i, β̂i, D̂i
)

Fig. 4. Pseudo-code of the non local InSAR algorithm. The procedure has

to be repeated iteratively. At iteration i the pre-estimated parameters R̂i−1 ,

β̂i−1, D̂i−1 are used to refine the estimates. In practice, the first pre-estimates
can be chosen as constant parameter images, and at least ten iterations have
to be performed to reach the best estimate.

non-local means have been proposed in [35]–[37]. We have

extended the solution proposed by Darbon et al. in [38] for

the NL-InSAR algorithm with a time complexity given by

O(4|Ω||W |). Finally, the computation time of our method

is of about 160 seconds per iteration for an image of size

|Ω| = 512 × 512 and windows of size |W | = 21 × 21 and

|∆| = 7× 7 using an Intel Pentium D 32-bit, 3.20GHz.

IV. EXPERIMENTS AND RESULTS

This section presents quantitative and qualitative results of

the proposed estimator. For reasons of space and visibility,

only small images are shown here. To assess the quality of the

denoising methods, the reader can compare the full size images

at http://www.perso.telecom-paristech.fr/∼deledall/nlinsar.php.

Some complementary comparisons are provided on this web-

page.

A. Results on synthetic data

This section presents qualitative and numerical results ob-

tained on simulated InSAR data. Given the true images of

reflectivity R, interferometric phase β and coherence D, two

single-look complex (SLC) images z1 and z2 are generated

according to the model presented in section I. The simulation

procedure, similar to that for simulating a polarimetric InSAR

image [24], is as follows:
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Fig. 5. Statistical answer on a rectangular function obtained from top to
bottom by the boxcar estimator, Lee’s estimator, the IDAN estimator, the
non-iterative NL-InSAR estimator and the (iterative) NL-InSAR estimator.

• Compute a matrix L such that Σ = LL∗. For example, the

lower triangle matrix L in the Cholesky decomposition

is a good candidate:

L =
√
R

(
1 0

De−jβ
√

1−D2

)

, (17)

• Generate two independent complex random variables x1,

x2 according to (1) with an identity covariance matrix,

• Finally, the correlated complex random variables z1, z2
are given by:

(
z1
z2

)

= L

(
x1

x2

)

. (18)

Once the two SLC SAR images are generated, the three InSAR

parameters are estimated and compared to the known actual

parameters. Our NL-InSAR estimator is applied with a search

window of size |W | = 21 × 21 and a similarity window

of size |∆| = 7 × 7. The parameters h and T are set as

described in [17] which leads to the values h = 12 and

T = 0.2|∆|. A minimum noise reduction of level Lmin = 10
is maintained. We use 10 iterations of the iterative NL-InSAR
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(a) (b) (c)

Fig. 6. (a) Reflectivity, (b) interferometric phase and (c) coherence of a
resolution test pattern obtained from top to bottom by the ground truth, the
SLC images (maximum likelihood estimator of [31]), the boxcar estimator,
the IDAN estimator [26] and the NL-InSAR estimator. A colorbar of the range
value is shown for each channel with pointers to indicate the underlying true
values.

filter to reach a satisfying estimation. Comparisons have been

performed with the classical boxcar filter on a 7 × 7 sliding

window, Lee’s estimator [24], the IDAN filter with an adaptive

neighborhood of maximum size 50 [26] and a non-iterative

NL-InSAR with weights based only on the likelihood term

with h = 4 (h is lower than in the iterative version to provide

a more discriminant likelihood term to compensate the lack of

the prior term).

Figure 5 shows the statistical answer of the five estimators

on a cut through a line of width 10. The statistics have been

measured on denoised images over 10 000 noisy generated

images. The ground truth, the mean and an interval of variation

(about 70% of the estimates) is represented on the graphics

for the three estimated components. It can be noticed that the

boxcar filter is unbiased with a low variance in homogeneous

area but it presents a strong spatial bias around the edges

of the rectangular function. This spatial bias produces large

underestimations of the coherence around edges which is

denoted in [24] as the dark ring effect. Lee’s estimator presents

TABLE I
SNR VALUES OF ESTIMATED INSAR IMAGES USING DIFFERENT

ESTIMATORS AND THE COMPUTATION TIME

Reflectivity Phase Coherence Time (sec)

SLC Image [31] -2.75 3.36 -1.19 –
WIN-SAR [15] 5.90 – – 101.76
PEARLS [19] – 5.27 – 394.83
Boxcar filter 6.47 5.90 -4.01 0.22
Lee [24] 6.23 9.12 2.03 0.77
IDAN [26] 5.00 7.88 0.33 522.53
NL-InSAR (non-it.) 6.26 8.70 5.82 148.39
NL-InSAR (10 it.) 9.02 13.04 6.92 1540.93

less spatial bias but has a higher variance. This is due in part

to the edge-aligned windows containing less samples to reduce

the variance, but also, to the window selection process which

presents high variations. IDAN provides a good restoration

of the edges but unfortunately a bias is introduced even in

homogeneous area. This is due to the region growing method

which tends to lower reflectivity and coherence values [26].

Moreover, the bias increases on the line since the adaptive

neighborhood selects samples out of the line. As a result

the variance is bigger than for the boxcar filter even if

there are as many values to estimate the cross-correlation.

We assume this phenomenon could be reduced by using a

more suitable similarity criterion to define the region growing.

NL-InSAR provides the best bias-variance trade-off. Indeed,

comparatively to the boxcar filter, Lee’s estimator and IDAN,

(iterative) NL-InSAR is neither biased in homogeneous area

nor around edges. Moreover, its variance is equivalent to the

one of the boxcar filter in homogeneous area. NL-InSAR has a

larger variance around edges than in homogeneous area since

these regions present less redundant patterns. The non-iterative

NL-InSAR provides a trade-off between the boxcar filter and

the iterative NL-InSAR.

Figure 6 presents the obtained estimated images for two

generated single-look complex images representing a 600×464
resolution test pattern. On the original resolution test pattern,

the contrasts between the lowest value and highest value, for

all channels, are the same as on the line cut of Figure 5.

The images obtained with the NL-InSAR estimator seem to

be well smoothed with a better edge and shape preservation.

The images obtained by the boxcar and the IDAN estimators

are more noisy than the images obtained by the NL-InSAR

filter (the remaining variance is larger). Moreover, the boxcar

estimator blurs the edges resulting in a loss of resolution and

large underestimations of the coherence around edges. The

IDAN filter preserves the shapes but the noise variance remains

large essentially in the coherence image, and small details are

lost essentially in the interferometric phase image. Finally, our

NL-InSAR estimator seems to work efficiently by preserving

small structures with a satisfying noise reduction.

To quantify the estimation qualities, Table I presents nu-

merical results for the resolution test pattern shown on Figure

6. The performance criterion used is the signal to noise ratio

(SNR):

SNR(û, u) = 10 log10

V ar[u]
1
|Ω|

∑

s∈Ω

(us − ûs)
2
. (19)
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where u is a component of the ground truth image (e.g., the

true reflectivity), û its estimate and Ω the image domain. Note

that for the interferometric phase, we measure the SNR of

the complex phase image ejβ̂ to deal with phase wrapping as

proposed in [19]. The results in term of SNR are compared

again with the boxcar filter, Lee’s estimator, IDAN, the non-

iterative NL-InSAR and also with WIN-SAR [15] (a wavelet

based amplitude filter) and PEARLS [19] (an adaptive local

phase filter). NL-InSAR outperforms all the other filters for

all components in term of SNR. In term of computation time,

the boxcar filter and Lee’s filter provide almost real-time

denoising while the others require at least 100 sec to process a

600×464 image with an Intel Pentium D 32-bit, 3.20GHz. 10

iterations of NL-InSAR take three times as long as IDAN. If

computation time is an issue, non-iterative NL-InSAR is three

times faster than IDAN and still provides a better denoising

in terms of SNR.

B. Results on True SLC SAR Data

This section presents an overview of results obtained on

pairs of co-registered real single-look complex SAR images

with the same InSAR estimators as above. The pairs of SAR

images are assumed to follow Goodman’s model presented in

section I.

The first experiment is performed on images acquired si-

multaneously (mono-pass) over a single building of complex

shape in Toulouse (France) by RAMSES (aerial sensor). They

are in X band with a resolution under one meter in azimuth

and slant range. Figure 7 presents the obtained estimates for

the different denoising filters. The range is on the horizontal

axis and the azimuth on the vertical axis. The algorithms are

executed with the same parameters as described in Section

IV-A. The results obtained with our NL-InSAR estimator seem

to be well smoothed with a better edge and shape preservation

than other filters. For instance, IDAN is unable to restore the

edges of the building when these edges are not present in the

amplitude images even though these edges are present in the

interferometric phase image. This is also the case for the three

trees on the left side of the image. Since NL-InSAR considers

both the information of amplitude and phase, NL-InSAR

restores the edges and the trees successfully. The speckle effect

is strongly reduced and the spatial resolution seems to be well

preserved: buildings, streets, and homogeneous areas are well

restored in the three parameter images. Moreover, the bright

scatterers (numerous in urban area) are well restored. Note that

NL-InSAR preserves well the three bright lines on the left of

the building whereas the boxcar filter blurs them and IDAN

attenuates them. This attests the efficiency of the patch-based

approach: the three lines acts as a rail on which the similarity

patch slides in order to combine all pixels parallel to the

bright lines. One can notice that very thin and dark structures

are attenuated by NL-InSAR, such as the thin streets. This

drawback might be avoided by using a smaller search window

size to reduce the bias. In [19], [20], [37], [39]–[41], the

authors propose to use adaptive search window size. Such

approaches could possibly be used in NL-InSAR to reduce

this undesired effect.

(a) (b) (c)

Fig. 7. First line: orthophoto sensed by Quickbird c©DigitalGlobe. Following
lines: (a) Reflectivity, (b) interferometric phase and (c) coherence of a building
in Toulouse (France), RAMSES c©ONERA, obtained from top to bottom by
the SLC images (maximum likelihood estimator of [31]), the boxcar estimator,
the IDAN estimator [26] and the NL-InSAR estimator. A colorbar of the range
value is shown for each channel.

The second experiment is performed on images acquired

with a time difference of 22 days (dual-pass) over a wide area

of Saint-Gervais-les-Bains (France) by TerraSAR-X (satellite

sensor). They are in X band with a resolution of about three

meters in azimuth and slant range. Figure 8 presents the

obtained estimates for the different denoising filters. The range

is on the horizontal axis and the azimuth on the vertical axis.

Denoising this interferometric pair of images is challenging:

resolution is low so most structures are only a few pixels

wide, and coherence is poor in some regions due to temporal

decorrelation and tropospheric variations. Given the limited

redundancy of structures (very thin scale), the window sizes
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(a) (b) (c)

Fig. 8. First line: orthophoto sensed by the sensor of the Institut
Géographique National (IGN) c©GEOPORTAIL 2007. Following lines: (a)
Reflectivity, (b) interferometric phase and (c) coherence of Saint-Gervais-les-
Bains (France), TerraSAR-X c©DLR, obtained from top to bottom by the
SLC images (maximum likelihood estimator of [31]), the boxcar estimator,
the IDAN estimator [26] and the NL-InSAR estimator. A colorbar of the range
value is shown for each channel.

have been reduced to better preserve the details (search win-

dow |W | set to 9×9, patch size |∆| set to 3×3, and h and T
parameters set to h = 5.3 and T = 0.2|∆| as recommended

in [17]). We still use Lmin = 10 and 10 iterations. The

classical boxcar filter is performed with a 3× 3 window and

the IDAN filter with an adaptive neighborhood of maximum

size 10. NL-InSAR clearly improves on the boxcar filter, even

with low coherence and low resolution data. The edges seem

better preserved than with IDAN filter and the remaining noise

variance in the interferometric phase is lower.

V. CONCLUSION

A new method was proposed for SAR interferogram esti-

mation. This method is based on the non-local means filter

[27] whose originality rests on the weighted combination of

pixel values which can be far apart. We apply the general

iterative methodology proposed in [17] to select suitable pixels

by evaluating a patch-based similarity considering noisy am-

plitudes, noisy interferometric phases and previous estimates.

Finally, the reflectivity, the actual interferometric phase and

the coherence are jointly estimated. The proposed estimator

out-performs state-of-the-art estimators in terms of both noise

reduction and edge preservation. The noise, present in the

input images, is well smoothed in the homogeneous regions

and the object contours are well restored (preservation of

the resolution). Moreover we can consider from our exper-

iments that the reflectivity, the actual interferometric phase

and the coherence are well recovered, without introducing

strong undesired artifacts and with a good restoration of bright

scatterers. Even if the performance of non-local approaches is

best when the scale of the structures in the image is larger

than the resolution, our method provides results comparable

or better to the state-of-the-art on data with low and high

resolutions. A drawback of this estimator is the attenuation

of thin and dark details in the regularized images. In a

future work, we will try to better preserve these structures

by using adaptive patch-size selection. The filter elaboration,

based on the statistics of the processed images, has led to

define a suitable patch-similarity criterion for InSAR images.

This similarity criterion could be applied in the future to

other applications such as pattern tracking and displacement

estimation.

APPENDIX A

SIMILARITY LIKELIHOOD

The similarity likelihood is given by the triple integral

I3=
∫∫∫

p(A1, A
′
1, φ1|R,D, β)p(A2, A

′
2, φ2|R,D, β)dRdDdβ.

Starting the integration calculus on the variable β, the follow-

ing simple integral has to be solved:

I1 =

∫

exp [λ (A1A
′
1 cos(φ1 − β) +A2A

′
2 cos(φ2 − β))] dβ

with λ = 2D
R(1−D2) . Integrating by substitution ψ ← β + φ2

and developing the cosine functions gives:

I1 =

∫

exp [λ (A2A
′
2 +A1A

′
1 cos(∆φ)) cos(ψ)+

λ (A1A
′
1 sin(∆φ)) sin(ψ)] dψ

with ∆φ = φ1 − φ2. Then, by using eq. 3.937.2 in [42]:

I1 = 2πJ0

(

j
2D
√

A2
1A

′
1
2 +A2

2A
′
2
2 + 2A1A′

1A2A′
2 cos∆φ

R(1−D2)

)

with Jn the Bessel function of the first kind. Pursuing on the

variable R gives the following integral:

I2 =

∫
1

R4
exp

(

−A
2
1 +A′

1
2 +A2

2 +A′
2
2

R(1−D2)

)

I1dR.
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Using the integration by substitution x← 1/R(1−D2) gives:

I2 = 2π(1−D2)3
∫

x2 exp
(
−x(A2

1 +A′
1
2 + A2

2 +A′
2
2)
)

J0

(

jx2D
√

A2
1A

′
1
2 +A2

2A
′
2
2 + 2A1A′

1A2A′
2 cos∆φ

)

dx.

According to eq. 6.621.4 in [42]:

I2 = 2π(1−D2)3

(

2A+D2B
√
A−D2B5

)

with A = (A2
1 +A′

1
2 +A2

2 +A′
2
2)2

and B = 4(A2
1A

′
1
2 +A2

2A
′
2
2 + 2A1A

′
1A2A

′
2 cos∆φ).

Finally, the triple integral can be expressed by the following

single integral on the variable D:

I3 =
8

π
C
∫

(1 −D2)(2A+D2B)
√
A−D2B5 dD.

with C = A1A
′
1A2A

′
2

Developing the expression and using integration by substitu-

tion x← D2, the following holds:

I3 =
8

π
C
[

1
√
A3

∫
x−1/2

√

1− xB/A5 dx+

B − 2A
2
√
A5

∫
x1/2

√

1− xB/A5 dx−

B
2
√
A5

∫
x3/2

√

1− xB/A5 dx

]

.

According to eq 3.194.1 in [42]:

I3 =
8

π
C
[

1
√
A3

(

22F1(
5

2
,
1

2
;
3

2
;
B
A )

)

+

B − 2A
2
√
A5

(
2

3
2F1(

5

2
,
3

2
;
5

2
;
B
A )

)

−

B
2
√
A5

(
2

5
2F1(

5

2
,
5

2
;
7

2
;
B
A )

)]

with 2F1 an hyper-geometric function. Finally, by developing

the hyper-geometric function, the triple integral is equal to:

I3 =
8C

π
√
B3

(

A+ B
A

√

B
A− B − arcsin

√

B
A

)

.

APPENDIX B

SIMILARITY ON THE ESTIMATES

The similarity on the estimate is defined from the Kull-

back Leibler divergence between two data distributions

p(A,A′,∆φ|R1, D1, β1) and p(A,A′,∆φ|R2, D2, β2). It is

equivalent to considering the Kullback Leibler divergence

between p(z|Σ1) and p(z|Σ2) with Σk as defined in (2) and

Rk = R′
k, k = 1..2. The Kullback Leibler divergence between

two zero-mean complex circular Gaussian distributions is

given by:

DKL(Σ1|Σ2) =
2

π

[

log

(
detΣ1

detΣ2

)

+ tr
(
Σ−1

1 Σ2

)
− 2

]

.

The symmetrical version of the Kullback Leibler divergence

is then:

SDKL(Σ1|Σ2) = DKL(Σ1|Σ2) +DKL(Σ2|Σ1)

=
2

π

[
tr
(
Σ−1

1 Σ2

)
+ tr

(
Σ−1

2 Σ1

)
− 4
]
.

Note that with Rk = R′
k, k = 1..2:

tr(Σ−1
1 Σ2) =2

[
R2(1−D1D2 cos(β1 − β2))

R1(1 −D2
1)

]

,

tr(Σ−1
2 Σ1) =2

[
R1(1−D2D1 cos(β1 − β2))

R2(1 −D2
2)

]

.

Then the symmetrical Kullback Leibler divergence is given

by:

SDKL(Σ1,Σ2) =
4

π

[
R1

R2

(
1−D1D2 cos(β1 − β2)

1−D2
2

)

+

R2

R1

(
1−D1D2 cos(β1 − β2)

1−D2
1

)

− 2

]
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