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Abstract—Image denoising is an important problem in image
processing since noise may interfere with visual or automatic
interpretation. This paper presents a new approach for image
denoising in the case of a known uncorrelated noise model. The
proposed filter is an extension of the Non Local means (NL
means) algorithm introduced by Buades et al. [1], which performs
a weighted average of the values of similar pixels. Pixel similarity
is defined in NL means as the Euclidean distance between patches
(rectangular windows centered on each two pixels). In this paper
a more general and statistically grounded similarity criterion
is proposed which depends on the noise distribution model. The
denoising process is expressed as a weighted maximum likelihood
estimation problem where the weights are derived in a data-
driven way. These weights can be iteratively refined based on
both the similarity between noisy patches and the similarity of
patches extracted from the previous estimate. We show that this
iterative process noticeably improves the denoising performance,
especially in the case of low signal-to-noise ratio images such as
Synthetic Aperture Radar (SAR) images. Numerical experiments
illustrate that the technique can be successfully applied to the
classical case of additive Gaussian noise but also to cases such as
multiplicative speckle noise. The proposed denoising technique
seems to improve on the state of the art performance in that
latter case.

Index Terms—Image denoising, Non Local means (NL means),
Weighted Maximum Likelihood Estimation (WMLE), Patch-
Based methods, Synthetic Aperture Radar (SAR)

I. INTRODUCTION

IMAGE denoising is a key pre-processing step in many

cases, e.g., low-light or high-speed imaging, low-cost sen-

sor usage in embedded systems, or also echographic, sonar

and radar coherent imaging techniques. Noise can generally be

well modeled with parametric distributions, either grounded on

physical or empirical considerations. Denoising then amounts

to estimate the space-varying value of these parameters. Nu-

merous denoising techniques have been proposed in the image

processing literature. The majority of them consider an addi-

tive white Gaussian noise model. Others have been specifically

designed for non-Gaussian and/or non-additive noise models.

Few denoising techniques provide general methodology that

apply to different noise models1.

Manuscript received January 14, 2009; revised May 14, 2009.
C. Deledalle and F. Tupin are with Institut Telecom, Telecom Paris-

Tech, CNRS LTCI, Paris, FRANCE, e-mail: charles-alban.deledalle@telecom-
paristech.fr and florence.tupin@telecom-paristech.fr.
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1Markov random fields are representative of such approaches.

The crudest denoising approach is the direct application

of the spatial coherence principle. It considers noisy samples

in a window centered on a given pixel as all following the

distribution of that pixel. This leads to the moving average

for Gaussian noise distributions, or more generally to max-

imum likelihood estimates such as the multi-look averaging

classically used in SAR image community [2]. The isotropy of

the filter can be improved by considering a weighted average

with a circular symmetric kernel such as a Gaussian kernel

of given standard deviation. The fundamental limitation of

those techniques comes from the loss of resolution in the

filtered image. The same smoothing effect is applied equally

to homogeneous regions, and to edges or textured zones. More

elaborate denoising techniques all aim at better preserving

image structures (edges, texture) while suppressing the noise.

Very different strategies have been proposed to achieve this

goal:

Markov Random Field (MRF) approaches introduce a prior

model of the noise-free image and search for a compromise

between that prior and noisy data. It is crucial for these

techniques to define a suitable prior that guarantees both the

smoothness of the denoised image and the preservation of its

structure. Total variation [3] is an example of a prior that en-

forces smoothness while preserving edges. Priors however tend

to bias the denoised image, especially when high noise levels

are considered. Markovian priors are local in essence, and lead

to stronger attenuation of several small disconnected regions

than that of a single region [4]. In practice, edge-preserving

MRF models generally lead to minimization problems with

non-smoothness and/or non-convexity issues.

It has been shown by Donoho and Johnstone [5] that spatial

adaptation of the smoothing can be obtained by wavelet soft-

thresholding. Wavelet shrinkage can be interpreted from a

Bayesian perspective as resulting from a ℓ1 sparsity-promoting

prior. Wavelet and cosine bases are indeed well known to be

able to capture most of a signal or image in a few coefficients.

This property is exploited by compression techniques such as

JPEG and JPEG2000. For denoising applications, orthogonal

transforms like the wavelet or discrete cosine transforms lead

to a separation of signal and noise. Noise can then be strongly

suppressed by zeroing the least significant coefficients. Such

approaches can be applied to additive Gaussian noise [6], [7]

and have been extended to multiplicative speckle noise [8]–

[13]. They can be improved by using shape-adaptive domains

[14], and sparse decompositions with over-complete or learned

dictionaries [15]–[17].
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Spatial adaptivity can also be reached by considering shape-

adaptive windows [18]–[20] or spatially variable bandwidth

selection [21]. Windows can naturally be generalized by

weights. In the framework of weighted averaging, it has been

proposed in the variants of the bilateral filter [22]–[25] to

use the gray level difference between the central pixel and

each neighboring pixel to define the corresponding weights.

More recently, Buades et al. proposed a more selective data-

driven way to set the weights [1], based on the Euclidean

distance between the patch that surrounds the central pixel

and the one that surrounds a given neighboring pixel. This

patch-based filter can be considered non-local as pixel values

far apart can be averaged together, depending on the weight

values (i.e., surrounding patch similarity). The Non Local

means (NL means) principle has lead to several extensions

and modifications that will be considered in the following

paragraphs. The best denoising techniques so far for additive

Gaussian noise [26]–[28] consist of a combination of the

ideas of similar patches selection with that of sparsification

by transforms or learned dictionaries. We refer the reader to

the very recent survey by Katkovnik et al. [29] for a deeper

analysis of the connections and evolutions of all denoising

approaches we mentioned here.

We describe in this paper a general methodology for patch-

based denoising and its application to additive Gaussian and

multiplicative speckle noises. The NL means algorithm [1]

appears as a special case. We give in Section II an interpreta-

tion of our denoising technique in the framework of weighted

maximum likelihood. The similarity between noisy patches is

defined from the noise distribution. We suggest in Section III

to refine iteratively the obtained weights by also including the

similarity between restored patches. This leads to an iterative

algorithm (Section IV) which is then compared in Section V

with the state of the art techniques for Gaussian or speckle

noise suppression.

II. PATCH-BASED WEIGHTED MAXIMUM LIKELIHOOD

This section introduces the proposed denoising method

in the framework of Weighted Maximum Likelihood Esti-

mation (WMLE) investigated in [30]. Contrary to Polzehl

and Spokoiny in [30], we define the weights following a

statistically grounded patch-based approach.

A. Weighted Maximum Likelihood Estimator

We consider image denoising as an estimation û of the

“true” image u∗ from noisy data v. The images are considered

to be defined over a discrete regular grid Ω and we denote

by vs a pixel value at site s ∈ Ω. We consider an uncorre-

lated noise model defined by a parametric noise distribution

p(vs|θ∗s) (namely the likelihood), with θ∗s a space-varying

unknown parameter2. Then, denoising an image is assumed

to be equivalent to find the best estimate θ̂ of θ∗.
At each site s, the Maximum Likelihood Estimator (MLE)

defines an estimate θ̂s of the underlying parameter θ∗s from

2parameter θ∗ may differ from u∗ but depends deterministically on u∗, as
does SAR reflectivity with respect to SAR amplitude in Section IV-B

a set Sθ∗

s
of independent and identically distributed random

variables by:

θ̂(MLE)
s , argmax

θs

∑

t∈Sθ∗
s

log p(vt|θs)

= argmax
θs

∑

t

δSθ∗
s

(t) log p(vt|θs),

with δSθ∗
s

the indicator function of Sθ∗

s
(i.e., δSθ∗

s

(t) = 1 if t ∈
Sθ∗

s
, 0 otherwise). The MLE is unbiased and asymptotically

efficient. In practice, the sets Sθ∗

s
for each s ∈ Ω are unknown.

Hence, we only approximate δSθ∗
s

(t) by data-driven weights

w(s, t) ≥ 0. This leads to the Weighted Maximum Likelihood

Estimation (WMLE) given by

θ̂(WMLE)
s , arg max

θs

∑

t

w(s, t) log p(vt|θs). (1)

WMLE is known to reduce the mean squared error by reducing

the variance of the estimate at the cost of a bias introduced by

samples that follow a distribution with a parameter θ∗t different

to θ∗s [31]. The WMLE framework has first been applied to

image denoising by Polzehl and Spokoiny [30].

As shown in Section IV, in the particular case of addi-

tive white Gaussian noise (WGN) model3, the corresponding

WMLE estimate is defined by a Weighted Averaging (WA):

θ̂(WA)
s ,

∑

t w(s, t)vt
∑

t w(s, t)
. (2)

This is consistent with the numerous denoising methods exist-

ing in image processing and based on a weighted averaging.

The weights used to approximate the indicator function can

be seen as membership values over a fuzzy set version of Sθ∗

s

(with proper weight normalization). This fuzzy set introduces

a bias in the estimation since similar noisy values coming

from different distributions are incorporated. However, this

drawback is counterbalanced by decreasing the variance of

the estimation. Actually, more pixel values are included in the

fuzzy set which decreases the variance of the estimation (note

that for pixel values defined on a continuum, the probability

measure P (θs = θp) is zero, which means that we almost

never find two pixels following the same distribution, thus

we do not average pixel values therefore leaving the noisy

image unchanged). According to this bias-variance trade-off,

WMLE can outperform MLE for well-chosen weights. That

is the purpose of the next section.

B. Setting the Weights between Noisy Patches

The definition of the weights w(s, t) is the main problem

addressed here. As noted in [30], a well-chosen definition of

the weights constitutes the key to the success of WMLE filters.

Under ergodic process assumption, w(s, t) can be defined

locally in the neighborhood of the site s. That is the case of

the Box filter (also known as multi-look filter in the context of

SAR images processing [2]) and the Gaussian filter. The local

neighborhood is fixed by the weights w(s, t) which increase

when the sites s and t are closer. Unfortunately, this kind of

filter is inappropriate to denoise singular features such as edges

3and more generally, for noise distributions in the exponential family [30]
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p(vs,k, vt,k, θ∗s,k = θ∗t,k)

p(θ∗s,k = θ∗t,k)
=

∫
p( vs,k, vt,k | θ∗s,k = θ, θ∗t,k = θ )p(θ∗s,k = θ, θ∗t,k = θ) dθ

∫
p(θ∗s,k = θ, θ∗t,k = θ) dθ

(5)

and textures for which the ergodicity assumption is invalid.

Instead of defining w(s, t) in spatial domain, Yaroslavsky

proposed a data-driven weight definition based on gray level

scale [22] also known as sigma-filter [24]. The weight w(s, t)
increases when the values vs and vt are more similar. Such

a filter was then refined by the SUSAN filter [23] and the

bilateral filter [25] which is defined both in spatial and gray

level scales.

More recently, Buades et al. proposed the Non-Local (NL)

means filter which relies on image redundancy [1]. It takes

inspiration on the patch-based approach proposed for texture

synthesis by Efros and Leung [32]. The weight w(s, t) is

defined by comparing two patches ∆s and ∆t centered re-

spectively around the sites s and t:

w(s, t)(NL) , exp

(

− 1

h

∑

k

αk|vs,k − vt,k|2
)

(3)

where vs,k and vt,k are respectively the k-th neighbor in the

patch ∆s and ∆t, the weights αk define a centered symmetric

Gaussian kernel and h controls the decay of the exponential

function. The similarity is expressed by a weighted Euclidean

distance over the two windows. This is well-adapted for

additive WGN models.

The Probabilistic Patch-Based (PPB) filter aims to define

a suitable patch-based weight to generalize the Euclidean

distance based weight used in the NL means algorithm. The

idea is to extend the NL means algorithm to non additive WGN

models. According to the previous comments, the weights can

be seen as a membership value over the fuzzy set version of

Sθ∗

s
= {t|θ∗t = θ∗s}. In a probabilistic patch-based approach,

we express this weight by the probability, given the noisy

image v, that the two patches ∆s and ∆t have the same

parameters. We follow the same idea as that of the NL-

means and assume equal values for the central pixel of two

statistically close image patches. The patch-based similarity

probability involves the following weight definition:

w(s, t)(PPB) , p(θ∗∆s
= θ∗∆t

|v)1/h (4)

where θ∗∆s
and θ∗∆t

denote the sub-image extracts from the

parameter image θ∗ in the respective windows ∆s and ∆t,

and h > 0 is a scalar parameter. The h parameter is similar

to that of the NL means algorithm and acts on the size of the

fuzzy set (i.e., the number significant weights) to control the

amount of filtering. Kervrann et al. justify the introduction

of parameter h by saying that it probably counterbalances

the invalidity of the patch independence assumption [33].

Under an independence assumption on the pixel of the patches,

the similarity probability may be decomposed into a product
∏

k p(θ∗s,k = θ∗t,k|vs,k, vt,k). In a Bayesian framework,

without knowledge on p(θ∗s,k = θ∗p,k) and p(vs,k, vt,k), the
probability p(θ∗s,k = θ∗t,k | vs,k, vt,k) can be considered

proportional to the likelihood p(vs,k, vt,k | θ∗s,k = θ∗t,k).

According to Equation 5 (at the top of the page) and under

independence assumption on vs,k and vt,k, the similarity

likelihood is given by

p(vs,k, vt,k | θ∗s,k = θ∗t,k) ∝
∫

D

p(vs,k|θ∗s,k = θ)p(vt,k|θ∗t,k = θ) dθ (6)

where D is the definition domain of the parameter θ. Note that
the denominator

∫
p(θ∗s,k = θ, θ∗t,k = θ) dθ in Equation

5 acts as a proportionality constant, as well as the quantity

p(θ∗s,k = θ, θ∗t,k = θ) which is assumed to be independent

of s, t, k and θ. When D is a continuum as R, R+ and C

then p(θ∗s,k = θ, θ∗t,k = θ) corresponds to an uniform

improper prior density. After acceptance of this paper, we

have become aware of the probabilistic similarity measure in

[34] expressed as in Equation 5 with an uniform prior density

p(θ∗s,k = θ, θ∗t,k = θ) defined on a bounded interval D.

C. Related Works and Motivations

In the non local approaches for density estimation intro-

duced in [35]–[37], the authors do not make any assumptions

on the noise distribution. The parameters are estimated by

minimizing a variational energy related to the joint probability

p(v∆s
). Having no prior on this joint probability, the energy

is expressed by a multivariate isotropic Gaussian kernel. The

Probabilistic Patch Based (PPB) filter does not requires such a

simplification since each quantity is defined directly from the

noise model.

The robust M-estimator in [38] consists on replacing the

exponential decay function in Equation 3 by a more suitable

function of the Euclidean distance. Their work is restricted on

additive WGN but could be extended here easily to replace the

power function in Equation 4 by a more suitable function of

the similarity probability. The use of the robust M-estimator

in a probabilistic patch-based approach could be the purpose

of a future work.

The PPB filter is also different from the non local solution

in [39] proposed for noise reduction in magnetic resonance

images. To avoid the Euclidean distance used in Equation 3,

the authors propose to use a MLE where the similarity is used

to select the suitable pixel values. The MLE is then performed

over the set of the most similar sites t with respect to the ℓ1

distance between v∆s
and v∆t

.

The Bayesian NL means filter, proposed in [33] and used for

ultra-sound speckle reduction in [40], minimizes the Bayesian

risk instead of maximizing the weighted likelihood. In the

particular case of additive WGN model, the same estimation is

obtained by WMLE and Bayesian risk minimization, which is

the weighted averaging given in Equation 2. To cope with non

additive WGN, the Euclidean based weights are substituted by

the conditional probability p
(
v∆s

|θ∗∆s
= v∆t

)
. This approach

assumes that v∆t
provides a good approximation on the true
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parameter θ∗∆t
. We suggest that the similarity probability

p(θ∗∆s
= θ∗∆t

|v) is more suitable since it does not make

such a strong assumption. In the case of additive WGN, this

conditional probability and our similarity probability involve

the same weight definition. Since the Bayesian NL means filter

makes this strong assumption, the authors proposed a two steps

algorithm to refine the weights. Based on a similar idea, we

describe in the next section an iterative procedure to enhance

the estimation.

III. ITERATIVE DENOISING

This section presents the iterative procedure used to refine

the patch-based weights estimation. The weights are defined

at each iteration as the product of two terms. The first term

corresponds to the similarity between noisy patches as defined

in section II-B. The second evaluates the similarity between

the restored patches extracted from the denoised image at the

previous iteration.

A. Refining the Weights with Denoised Patches

The Probabilistic Patch-Based (PPB) filter is a WMLE filter

where the weights are defined by the similarity probabili-

ties (see Equation 4). The idea is to refine iteratively these

weights by including patches from the estimate of the image

parameters. Let us consider at iteration i the previous estimate

θ̂i−1 of θ∗. Then, the patch-based similarity probability can

be extended by introducing the knowledge of θ̂i−1:

w(s, t)(it. PPB) , p(θ∗∆s
= θ∗∆t

|v, θ̂i−1)1/h. (7)

With the same considerations as in Section II-B, the similarity

probability can be decomposed as a product of the probabilities

p(θ∗s,k = θ∗t,k | vs,k, vt,k, θ̂i−1). In a Bayesian framework,

without knowledge on p(vs,k, vt,k), and assuming the event

vs,k, vt,k | θ∗s,k = θ∗t,k is independent of θ̂i−1, the following

relation holds:

p(θ∗s,k = θ∗t,k | vs,k, vt,k, θ̂i−1) ∝
p(vs,k, vt,k | θ∗s,k = θ∗t,k)
︸ ︷︷ ︸

likelihood

× p(θ∗s,k = θ∗t,k | θ̂i−1)
︸ ︷︷ ︸

a priori

. (8)

The likelihood term corresponds to the data fidelity and was

defined in the previous section (see Equation 6). The prior

term measures the validity of θ∗s,k = θ∗t,k given the estimate

θ̂i−1. We assume the equality θ∗s,k = θ∗t,k is more likely

to hold as the data distributions with parameters θ̂i−1
s,k and

θ̂i−1
t,k get closer. The prior term is a function of a similarity

between these two data distributions. Polzehl and Spokoiny

used the Kullback-Leibler divergence between the estimates4

as a test statistic of hypotheses θ∗s,k = θ∗t,k [30]. We also

suggest using a symmetrical version of the Kullback-Leibler

divergence over an exponential decay function

p(θ∗s,k = θ∗t,k | θ̂i−1) ∝

exp

(

− 1

T

∫

D

(

p(t|θ̂i−1
s,k ) − p(t|θ̂i−1

t,k )
)

log
p(t|θ̂i−1

s,k )

p(t|θ̂i−1
t,k )

dt

)

(9)

4they considered in their work noise distributions from the exponential
family

Fig. 1. Scheme of the iterative Probabilistic Patch-Based (PPB) filter. The
PPB Weights Estimator (PPBWE) computes the weights w(s, t) by using

the noisy image v and the estimate θ̂i−1. The WMLE computes the new

parameters θ̂i by using the estimated PPB weights w(s, t) and the noisy
image v. The procedure is repeated until there is no more change between
two consecutive estimates.

where D is the domain of pixel values and T > 0 is a

positive real value. This corresponds to the Kullback-Leibler

divergence based kernel used in [41]. The parameters T and

h act as dual parameters to balance the trade-off between the

noise reduction and the fidelity of the estimate. The reader

can find a detailed discussion about the influence of such

parameters in [30].

This refining procedure is performed iteratively. Indeed, at

iteration i− 1, estimates θ̂s provide the estimate θ̂i−1 used at

iteration i. Note that θ̂i−1 is updated only after θ̂s is evaluated

for all sites s ∈ Ω. This corresponds to a synchronous

local iterative method [42]. This kind of algorithms converges

to a solution depending on the initial parameter θ̂1. For

best performances, the initial estimate should preferably have

a good signal to noise ratio with preservation of the thin

structures existing in the noisy image. A way to construct

such an initialization is given in Section IV-C.

Figure 1 illustrates the whole procedure:

1 first, the PPB Weights Estimator computes the weights

w(s, t) by using the noisy image v for the likelihood

term (Equation 6) and by using the estimate θ̂i−1 for the

prior term (Equation 9);

2 then, the WMLE computes the new parameters θ̂i by

using the estimated PPB weights w(s, t) and the noisy

image v (Equation 1);

3 steps 1 and 2 are repeated until there is no more change

between two consecutive estimates.

B. Related Works

In the iterative PPB filter, the weights are defined by two

terms. The first term, the data fidelity, depends on the original

noisy image and considers its pixel values as a realization of

the noise generative model. The second term is calculated from

the previously estimated image and considers its pixel values

as the “true” parameters of the noise generative model. This

idea is different from the iterative NL means versions defined

in [43] and the gradient descents proposed in [35], [36],

[38], where only previously estimated parameters are used

to compute the similarity criterion. In [35], [38] a weighted

averaging is performed on the previously estimated image

instead of the noisy image. Our approach seems to converge

to a solution closer to the noise-free image since the solution

remains guided by the noisy image over the different iterations.

In [44], the parameters are estimated iteratively by the

Maximum A Posteriori (MAP) estimator under assumptions
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of interactions between pixels of the “true” image parameters.

The similarity with our method is the use of a non-local

approach to define the graph of interactions which is computed

and re-estimated using the original noisy image and the

previous estimate. In [45], the parameters are also estimated

by the MAP estimator but under the assumption that the “true”

image is close to the non-local means result. Such a method

is used in [46] in the case of speckle reduction. The authors

proposed to eventually reestimate the non-local weights by

using the previous estimate. The first difference with our filter

is that their non-local estimation corresponds to a weighted

average instead of a WMLE. Another difference is that they

compare the model parameters with a Minkowski distance

instead of the symmetric Kullback-Leibler divergence.

The iterative PPB filter is related to the Expectation-

Maximization (EM) procedure [47]. The EM algorithm is

a two steps iterative algorithm which converges to a local

optimum depending on the initial estimate. The first step

(E-Step) evaluates a complete-data likelihood expectation by

computing sufficient parameters using a previous estimate,

while we evaluate a weighted likelihood by computing sim-

ilarity probabilities using the previous estimate θ̂i−1. The

second step (M-Step) maximizes the complete-data likelihood

expectation, while we maximize the weighted likelihood. As

in the EM procedure, the PPB filter considers also the previous

estimate as “true” parameters. According to our experiments,

this consideration involves the model stability over the dif-

ferent iterations and provides the convergence of our method.

Nevertheless, our function is not related to a complete-data

likelihood expectation over our latent variable δSθ∗
s

(t). The
similarity between two patches is a good indication that their

central values are close (as demonstrated by the performance

of NL-means). Dissimilar patches however do not provide

any clue on the difference or closeness between the central

values. The complete-data likelihood expectation that should

be computed in a normal E-Step is therefore less relevant in

our context. Finally, our latent variable definition makes the

algorithm locally defined for all sites s. Then, the PPB filter is

a synchronous local iterative method while an EM algorithm

would try to resolve iteratively the problem directly on the

global image.

IV. ALGORITHM DERIVATION IN THE CASES OF GAUSSIAN

AND SPECKLE NOISES

This section presents the derived algorithms from the itera-

tive Probabilistic Patch-Based (PPB) filter for additive White

Gaussian Noises (WGN) and multiplicative speckle noises

present in SAR images. Finally, the automatic setting of the

parameters and the algorithm complexity are discussed.

A. Derivation in the case of Gaussian Noise

Under the additive WGN model assumption, the pixel values

Is are independent and identically distributed according to

the normal distribution N (µ∗
s , σ

2) where µ∗ is the underlying

noise-free image and σ2 the noise variance. Then, it is straight-

forward to show from the first order optimality condition that

µ̂(WMLE)
s =

∑

t w(s, t)It
∑

t w(s, t)

must hold to maximize the WMLE defined in Equation 1, and

according to Appendix A:

p(Is,k, It,k|µ∗
s,k = µ∗

t,k) ∝ exp

(

−|Is,k − It,k|2
4σ2

)

,

p(µ∗
s,k = µ∗

t,k | µ̂i−1) ∝ exp

(

− 1

T

|µ̂i−1
s,k − µ̂i−1

t,k |2
σ2

)

.

Finally the weights at iteration i can be defined as

w(s, t)(it. PPB) =

exp

[

−
∑

k

(

1

h

|Is,k − It,k|2
4σ2

+
1

T

|µ̂i−1
s,k − µ̂i−1

t,k |2
σ2

)]

.

In a non-iterative version, T → +∞, the filter is exactly the

NL means filter. Then the PPB filter can be considered as

an iterative extension of the NL means filter. Note that the

Gaussian kernel, defined by the weights αk in Equation 3, is

not used in the PPB filter (i.e., PPB is purely non-local), but

can be re-introduced easily.

B. Derivation in the case of Speckle Noise

In SAR images, the information sought (the reflectivity) is

considered to be corrupted by the multiplicative Goodman’s

speckle noise model [48]. The pixel amplitudes As are mod-

eled as independent and identically distributed according to

the following Nakagami-Rayleigh distribution

p(As|R∗
s) =

2LL

Γ(L)R∗
s

L
A2L−1

s exp

(

−LA2
s

R∗
s

)

where R∗ is the underlying reflectivity image and L the

equivalent number of looks. Note that the underlying noise-

free amplitude image A∗ is the square root of the reflecivity

image R∗. From the first order optimality condition, the

following estimation

R̂(WMLE)
s =

∑

t w(s, t)A2
t

∑

t w(s, t)

must hold to maximize the WMLE defined in Equation 1, and

according to Appendix B:

p(As,k, At,k|R∗
s,k = R∗

t,k) ∝
(

As,kAt,k

A2
s,k + A2

t,k

)2L−1

,

p(R∗
s,k = R∗

t,k | R̂i−1) ∝ exp

(

−L

T

|R̂i−1
s,k − R̂i−1

t,k |2

R̂i−1
s,k R̂i−1

t,k

)

.

Finally the weights at iteration i can be defined as

w(s, t)(it. PPB) =

exp

[

−
∑

k

(

1

h̃
log

(
As,k

At,k
+

At,k

As,k

)

+
L

T

|R̂i−1
s,k − R̂i−1

t,k |2

R̂i−1
s,k R̂i−1

t,k

)]

.

where h̃ = h/(2L− 1). In a non-iterative version, T → +∞,

the filter is based on the same scheme as the NL means filter by
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substituting the Euclidean distance with a similarity criterion

adapted to speckle noise and given by

log

(
A1

A2
+

A2

A1

)

(10)

where A1 and A2 are two observed amplitude values.

C. Choice of the Window Sizes and the Initialization

For complexity reasons, the pixels t are restricted to a

window Ws centered around s. Then, the algorithm complexity

is given by O(|Ω||W ||∆|) where |Ω|, |W | and |∆| are respec-
tively the image size, the search window size and the similarity

patch size. Several optimizations have been proposed as the

block-based approach [49], the fast non-local means [50], the

improved NL means [38] and the solution implemented here

and proposed by Darbon et al. in [51] with a time complexity

given by O(4|Ω||W |).
As suggested by Buades et al. a search window of size

|W | = 21 × 21 is used and a similarity window of size

|∆| = 7×7 [1]. Finally, the computational time of our method

is of 22 seconds and 35 seconds per iteration for the additive

WGN implementation and the multiplicative speckle noise

respectively (image of size |Ω| = 512 × 512, using an Intel

Pentium D 3.20GHz).

Kervrann and Boulanger showed that the size of |W | acts
as a bias-variance trade-off on the estimation [43]. When the

window size increases, the variance decreases but the estima-

tion is more biased because there are more values coming from

different distributions. Then, we suggest to compute the initial

image parameters θ1 by the iterative PPB filter with a smaller

search window size. Thus, small features will be preserved

and noise reduced before proceeding to a stronger denoising

in the following steps.

D. Choice of the Filtering Parameters

The purpose is to find automatically a value of h. Since
w(s, t)(PPB) ∝ exp

(
1
h log p(θ∗∆s

= θ∗∆t
|v)
)
, the parameter h

can be seen as a normalization of a similarity criterion defined

by c(v∆s
, v∆t

) = −∑k log p(vs,k, vt,k| θ∗∆s
= θ∗∆t

). The
weights range is directly related to the range of variation of this

criterion. In order to normalize the criterion values, we suggest

to subtract from the criterion its mathematical expectation.

Once the criterion values are centered around zero, the value

of h can be chosen as an α-quantile of the distribution of

the new centered criterion between two random noisy patches

v∆s
, v∆t

with identical “true” parameters θ∗∆s
= θ∗∆t

. That

is different from [30], [43], where h was chosen accordingly

to the distribution of the original non-centered criterion. In our

case, the minimum of the similarity criterion is not necessarily

zero which requires to center the data first. Note that centering

the data corresponds to a division of the weights after applying

the exponential decay function. Since WMLE is independent

to multiplicative constants, the definition of the PPB filter

remains unchanged. Finally the parameter h, defined as the

α-quantile of the new centered criterion, is given by:

h , q − E[c(v∆s
, v∆t

)] (11)

with q = F
−1
c(v∆s

,v∆t
)(α)

where q, E and F denote respectively the α-quantile, the

expectation and the cumulative distribution function.

Unlike h, the parameter T cannot be defined from the

distribution of the similarity criterion between the estimated

patches. Indeed, this distribution depends on the statistical

model of the previous estimate θ̂i−1 which is non-stationary

and depends on the unknown image θ∗. An adaptive estimation

of these distribution could be considered in a future work

to choose a local adaptative parameter T as done in [37],

[38], [43], [52]. We choose to tune manually T after a value

of h is fixed. Our results indicate that this value ranges

around 0.20|∆| for any image and noise model when h is

set according to the Equation 11 with α = 0.92.

E. Convergence and Choice of the Number of Iterations

To study the convergence of the iterative PPB filter, the

Signal to Noise Ratio (SNR) is computed and given by

SNR(ûi, u∗) = 10 log10

V ar[u∗]
1
|Ω|

∑

s∈Ω

(u∗
s − ûi

s)
2
. (12)

Figure 2 shows the evolution of the SNR during the iterations

for three initializations: our preestimated image proposed in

Section IV-C, the noise-free image and a constant image. The

iterative PPB filter is studied on the 512 × 512 Lena image

corrupted by additive WGN with standard deviation σ = 40
and multiplicative Goodman’s speckle noise with equivalent

number of looks L = 3. The algorithm converges for all ini-

tializations and similar solutions are reached, which illustrates

that the algorithm is not very sensitive to the initialization.

Note that the noise-free image is not a fixed-point of our

algorithm since some changes are applied before reaching con-

vergence. According to Section III-A, the similarities between

the successive estimates θ̂i and θ̂i+1 can be measured by the
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Fig. 2. Evolution of (top) the SNR and (bottom) the symmetric Kullback-
Leibler divergence between two successive estimates. The evolution is mea-
sured for three different initial estimates: a preestimated image, the noise-
free image and a constant image. The iterative PPB filter is studied on the
512 × 512 Lena image corrupted by (a) an additive WGN with standard
deviation σ = 40 and (b) a multiplicative Goodman’s speckle noise with
equivalent number of looks L = 3.



DELEDALLE, DENIS AND TUPIN: ITERATIVE WEIGHTED MAXIMUM LIKELIHOOD DENOISING WITH PROBABILISTIC PATCH-BASED WEIGHTS 7

(a) (b) (c) (d) (e)

Fig. 3. (a) From top to bottom, corrupted images of Barbara, Boat, House and Lena by an additive WGN with standard deviation σ = 40. Denoised images
using (b) the K-SVD filter, (c) the BM3D filter, (d) our non-iterative PPB filter (i.e the NL-Means filter) and (e) 25 iterations of our PPB filter.

symmetrical Kullback-Leibler divergence. Then, we suggest to

use this criterion to measure the amount of changes between

two successive estimated images. Figure 2 shows the evolution

of this criterion during the iterations (normalized according to

the image size |Ω|). The curves converge to 0 whatever the

initialization. This means that, after enough iterations, there

are no more changes between two successive iterations: the

iterative procedure has reached convergence. Thus, we propose

to use this measure as a stopping criterion. In practice, the

procedure converges in about 15 iterations. Note that the speed

of convergence depends also on the parameter T .

V. EXPERIMENTS AND RESULTS

A. Results on Synthetic Images

This section presents visual and numerical results obtained

on four synthetic images corrupted by additive WGN and mul-

tiplicative Goodman’s Speckle Noises (GSN). The corrupted

images are obtained from four classical noise-free images:

Barbara, Boat, House and Lena. On all noisy images, the

non-iterative and the iterative Probabilistic Patch-Based (PPB)

filters are applied. A search window of size |W | = 21 × 21
and a similarity window of size |∆| = 7 × 7 are used. For

the non-iterative procedure, the parameter h has been set with

α = 0.88. For the iterative procedure, the parameters have

been set to α = 0.92 and T = 0.20|∆| for all experiments. We

used 25 iterations of the iterative PPB filter to ensure to reach

convergence. Some comparison with the latest state-of-the-

art filters are provided. For additive WGN, the comparisons

have been performed with the NL-means [1], the K-Singular

Value Decomposition (K-SVD) [53] and the Block-Matching

and 3D collaborative filtering (BM3D) [26]. Note that the

NL-means filter corresponds here to the non-iterative PPB

filter. For multiplicative GSN, the comparisons have been

performed with the Wavelet-based Image-denoising Nonlinear

SAR (WIN-SAR) filter [11] and the MAP filter based on

Undecimated Wavelet Decomposition and image Segmentation

(MAP-UWD-S) [13].

Figures 3 and 4 present the obtained denoised images for

the images corrupted respectively by additive WGN with

a standard deviation σ = 40 and by multiplicative GSN

with an equivalent number of look L = 3. Note that these

two noise levels have been chosen because they provide

comparable levels of SNR. For reasons of space and visibility,

only small sub-images are shown here. To assess the quality

of the denoising methods, the reader can compare the full

size images at http://www.tsi.enst.fr/∼deledall/ppb.php. Some

complementary comparisons are provided on this webpage.
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(a) (b) (c) (d) (e)

Fig. 4. (a) From top to bottom, corrupted images of Barbara, Boat, House and Lena by a multiplicative speckle noise with equivalent number of looks
L = 3. Denoised images using (b) the WIN-SAR filter, (c) the MAP-UWD-S filter, (d) our non-iterative PPB filter and (e) 25 iterations of our PPB filter.

TABLE I
SNR VALUES OF ESTIMATED IMAGES USING DIFFERENT DENOISING METHODS FOR IMAGES CORRUPTED BY (LEFT) AN ADDITIVE WGN WITH

DIFFERENT STANDARD DEVIATIONS AND BY (RIGHT) A MULTIPLICATIVE SPECKLE NOISE WITH DIFFERENT EQUIVALENT NUMBERS OF LOOKS

σ = 10 σ = 20 σ = 40 σ = 60

Barbara

Noisy image 14.73 8.80 3.09 0.04
K-SVD 21.02 17.43 13.01 09.29
BM3D 21.48 18.38 14.59 12.14

PPB non-it. (NL means) 19.85 16.97 12.85 10.24
PPB 25 it. 18.69 15.96 13.49 10.99

Boat

Noisy image 13.41 7.42 1.63 -1.49
K-SVD 18.87 15.62 11.78 9.04
BM3D 19.09 16.09 12.83 10.55

PPB non-it. (NL means) 17.59 14.63 11.06 8.96
PPB 25 it. 17.19 14.51 11.63 9.50

House

Noisy image 13.27 7.26 1.45 -1.62
K-SVD 21.15 18.31 14.36 10.22
BM3D 21.77 18.94 15.78 13.28

PPB non-it. (NL means) 20.25 17.55 13.33 10.40
PPB 25 it. 19.59 17.03 14.20 11.57

Lena

Noisy image 13.59 7.60 1.81 -1.25
K-SVD 20.93 17.81 14.18 11.09
BM3D 21.27 18.42 15.33 13.05

PPB non-it. (NL means) 20.12 17.10 13.66 11.33
PPB 25 it. 19.50 16.90 14.20 11.99

L = 1 L = 2 L = 4 L = 16

Barbara

Noisy image -1.09 1.69 4.61 10.57
WIN-SAR 8.82 10.48 12.04 15.82
MAP-UWD-S 9.65 11.44 13.28 16.93
PPB non-it. 9.79 11.88 14.05 17.83

PPB 25 it. 10.58 12.51 13.98 16.59

Boat

Noisy image -2.99 -0.18 2.70 8.67
WIN-SAR 8.57 10.65 12.14 15.17
MAP-UWD-S 9.26 10.68 12.31 15.71

PPB non-it. 8.71 10.49 12.22 15.33
PPB 25 it. 9.43 10.91 12.25 15.10

House

Noisy image -3.55 -0.76 2.11 8.10
WIN-SAR 8.69 11.42 13.15 16.24
MAP-UWD-S 10.34 11.97 13.72 17.24
PPB non-it. 9.06 11.61 14.29 18.27

PPB 25 it. 10.46 12.98 14.50 17.42

Lena

Noisy image -2.45 0.34 3.25 9.19
WIN-SAR 10.35 13.00 14.72 17.90
MAP-UWD-S 11.87 13.53 15.14 18.65

PPB non-it. 11.05 13.20 15.18 18.61
PPB 25 it. 12.16 13.95 15.25 18.10
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(a) (b) (c) (d) (e)

Fig. 5. (a) From top to bottom, SAR images of Bayard (France) c©DGA c©ONERA, Cheminot (France) c©DGA c©ONERA, Toulouse (France) c©DGA
c©ONERA and Lelystadt (Netherlands) c©ESA. Denoised images using (b) the WIN-SAR filter, (c) the MAP-UWD-S filter, (d) our non-iterative PPB filter
and (e) 25 iterations of our PPB filter.

Recall that for synthetic SAR images the noise-free image is

given by the squared root of the estimated reflectivity images

(Section IV-B). The images obtained with the iterative PPB

filter seem to be well smoothed with a better edge and shape

preservation than the non-iterative PPB filter (and than NL

means filter in case of additive WGN). The images denoised by

the K-SVD and the BM3D filters present some artifacts while

the PPB filter provides smoother regions with comparable edge

preservation. However, our PPB filter seems to attenuate the

image contrast and thin and dark structures as the mouth of

Lena, the eyes of Barbara and the ropes of the Boat, while the

BM3D filter preserves these structures. This phenomenon can

in part be explained by the high value of α-quantile chosen to

get a (qualitatively satisfying) low variance in homogeneous

regions. It could also be reduced by considering smaller search

windows, at the cost of a larger remaining noise variance (see

Section IV-C).

The images denoised by the WIN-SAR and the MAP-UWD-

S filters are less smoothed than the images obtained by the

PPB filter. Moreover, the WIN-SAR filter blurs the edges

and the MAP-UWD-S filter introduces some artifacts in the

neighborhood of the edges. Finally, our PPB filter seems to

be working equally well for additive WGN and multiplicative

GSN when the SNR is similar. Thus, the PPB filter seems to

be an efficient extension of the NL means filter to take into

account different noise degradation models.

To quantify the denoising qualities, Table I presents numer-

ical results for images corrupted by additive WGN with stan-

dard deviations σ = 10, 20, 40 and 60 and by multiplicative

GSN with equivalent number of looks L = 1, 2, 4 and 16.
The performance criterion used is the Signal to Noise Ratio

(SNR) presented in Equation 12. We observe that the iterative

PPB filter improves on the non-iterative PPB filter for low

SNR images. High SNR images (standard deviation σ ≤ 30
or equivalent number of looks L ≥ 4) do not require iterative

refinement of the weights. In case of additive WGN, the PPB

filter is better than the K-SVD filter for low SNR images, but

is out-performed by the BM3D filter at all SNR values. In

the case of multiplicative GSN, the PPB filter out-performed

all the state-of-the-art filters considered for low SNR images.

Nevertheless, the PPB filter provides comparative results to the

MAP-UWD-S filter for high SNR images (i.e., with a large

equivalent number of looks L). The iterative PPB filter is then

more relevant since SAR images are generaly provided for a

low equivalent number of look as L = 1, 2, 3 or 4.
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B. Results on Real SAR Images

This section presents an overview of different results ob-

tained on four real SAR images with the same state-of-the-art

speckle filters as the ones used above and our PPB filter. There

are two single-look SAR acquisitions identified as Bayard and

Cheminot from Saint-Pol-sur-Mer (France), sensed in 1996 by

RAMSES of ONERA. There is a single-look SAR acquisition

identified as Toulouse of the CNES in Toulouse (France)

sensed also by RAMSES and provided by the CNES. And

there is a multi-look SAR image identified as Lelystadt of an

agriculture region in Lelystadt (Netherlands), sensed by ERS-

1 with 3 equivalent number of looks (PRI data) and provided

by the European Space Agency (ESA). All these images are

assumed to follow the multiplicative Goodman’s speckle noise

model. These 4 images provide a testing set which presents

a good diversity: different sensors (RAMSES/ERS), different

scenes (urban/agricultural), different noises (single-look/multi-

looks). In all experiments, the algorithms are executed with the

same parameters described in Section V-A.

Figure 5 presents the obtained denoised images for the

different real SAR images and the different denoising filters.

The results obtained with our iterative PPB filter seem to

be well smoothed with a better edge and shape preservation

than other filters. The speckle effect is strongly reduced and

the spatial resolution seems to be well preserved: buildings,

sidewalks, streets, fields are well restored. Moreover, the

bright scatterers (numerous in urban area) are well restored.

Unfortunately, the PPB filter seems to attenuate thin and dark

structures existing in the SAR image, such as the thin streets

in Cheminot and Toulouse and the channels between the fields

of Lelystadt.

VI. CONCLUSION

A general methodology was proposed for image denoising

which can be adapted to different noise distributions. This

method is based on the Non-Local means filter (NL means)

[1] and can be adapted to non-additive and/or non Gaussian

noises. An iterative procedure is proposed to enhance the

denoising quality in case of low signal to noise ratio images

and its efficiency has been shown on additive Gaussian noise

and multiplicative speckle noise. The proposed filter is out-

performed by the BM3D filter [26] in the case of additive

Gaussian noise. However, our filter provides interesting and

promising results for Synthetic Aperture Radar (SAR) images,

damaged by a multiplicative speckle noise. The noise, present

in the input images, is well smoothed in the homogeneous

regions and the object contours are well restored (preservation

of the resolution). Moreover we can consider from our numer-

ical experiments, that the reflectivity in SAR images is well

recovered, without introducing undesired artifacts, with a good

restoration of bright scatterers. More generally, it provides a

new framework for the estimation of image parameters when

the uncorrelated noise model is known. This framework could

be used for multi-channel image denoising or joint denoising

of several images as done for joint interferometric SAR data

denoising in [54]. A drawback of the filter is the suppression

of thin and dark details in the regularized images. In a future

work, we will try to better preserve thin and dark details,

by using adaptive filtering as done in [37], [38], [43], [52].

The filter elaboration, based on the statistics of the processed

images, has led to define a suitable patch-similarity criterion

for SAR images. This similarity criterion will be applied to

other applications such as pattern tracking and displacement

estimation.
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APPENDIX A

WEIGHTS DERIVATION FOR ADDITIVE WGN

The similarity probability is given by

∫ +∞

−∞

1

2πσ2
exp

(

−|I1 − µ|2 + |I2 − µ|2
2σ2

)

dµ

=
1

2
√

πσ
exp

(

−|I1 − I2|2
4σ2

)

according to the convolution of two Gaussian functions.

Now, note the following statement

|t − µ2|2 − |t − µ1|2 = −(µ2
1 − µ2

2) + 2t(µ1 − µ2)

Then, the Kullback-Leibler divergence is given by

∫ +∞

−∞

1√
2πσ

exp

(

−|t − µ1|2
2σ2

)

× |t − µ2|2 − |t − µ1|2
2σ2

dt

= −µ2
1 − µ2

2

2σ2

∫ +∞

−∞

1√
2πσ

exp

(

−|t − µ1|2
2σ2

)

dt

︸ ︷︷ ︸

=1

+
µ1 − µ2

σ2

∫ +∞

−∞

t√
2πσ

exp

(

−|t − µ1|2
2σ2

)

dt

︸ ︷︷ ︸

=µ1

= −µ2
1 − µ2

2

2σ2
+

µ2
1 − µ1µ2

σ2

Finally, the symmetric Kullback-Leibler divergence is

−µ2
1 − µ2

2

2σ2
+

µ2
1 − µ1µ2

σ2
+

µ2
1 − µ2

2

2σ2
− µ1µ2 − µ2

2

σ2

=
µ2

1 − 2µ1µ2 + µ2
2

σ2
=

|µ1 − µ2|2
σ2
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APPENDIX B

WEIGHTS DERIVATION FOR MULTIPLICATIVE GSN

First, note the following equality
∫ ∞

0

A

xn
exp

(

−B

x

)

dx = AB1−nΓ(n − 1)

Then, the similarity probability is given by

∫ ∞

0

4L2LA2L−1
1 A2L−1

2

Γ(L)2R2L
exp

(

−L(A2
1 + A2

2)

R

)

dR

= 4L
Γ(2L − 1)

Γ(L)2

(
A1A2

A2
1 + A2

2

)2L−1

The Kullback-Leibler divergence is given by

∫ ∞

0

2LLt2L−1

Γ(L)RL
1

exp

(

−Lt2

R1

)(

L log
R2

R1
+

Lt2

R2
− Lt2

R1

)

dt

= L log
R2

R1

∫ ∞

0

2LL

Γ(L)RL
1

t2L−1 exp

(

−Lt2

R1

)

dt

︸ ︷︷ ︸

=1

+

(
L

R2
− L

R1

)∫ ∞

0

2LL

Γ(L)RL
1

t2L+1 exp

(

−Lt2

R1

)

dt

︸ ︷︷ ︸

=R1

= L log
R2

R1
+ L

R1

R2
− L

Finally, the symmetric Kullback-Leibler divergence is

L log
R2

R1
+ L

R1

R2
− L − L log

R2

R1
− L + L

R2

R1

= L
R1

R2
+ L

R2

R1
− 2L = L

|R1 − R2|2
R1R2
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[40] P. Coupé, P. Hellier, C. Kervrann, and C. Barillot, “Bayesian non-local

means-based speckle filtering,” in Proc. IEEE Int. Symp. on Biomedical

Imaging: from nano to macro (ISBI’08), Paris, France, May 2008.
[41] P. Moreno, P. Ho, and N. Vasconcelos, “A Kullback-Leibler divergence

based kernel for SVM classification in multimedia applications,” Ad-

vances in Neural Information Processing Systems, vol. 16, 2004.
[42] E. Bratsolis and M. Sigelle, “Fast SAR image restoration, segmenta-

tion, and detection of high-reflectance regions,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 41, no. 12, pp. 2890–2899, 2003.
[43] C. Kervrann and J. Boulanger, “Local Adaptivity to Variable Smoothness

for Exemplar-Based Image Regularization and Representation,” Interna-

tional Journal of Computer Vision, vol. 79, no. 1, pp. 45–69, 2008.
[44] G. Peyre, S. Bougleux, and L. Cohen, “Non-local Regularization of

Inverse Problems,” in Proc. of ECCV, vol. 2008, 2008.
[45] M. Mignotte, “A non-local regularization strategy for image deconvo-

lution,” Pattern Recognition Letters, vol. 29, no. 16, pp. 2206–2212,
2008.

[46] N. Azzabou and N. Paragios, “Spatio-temporal Speckle Reduction in
Ultrasound Sequences,” in Proceedings of the 11th international confer-

ence on Medical Image Computing and Computer-Assisted Intervention-

Part I. Springer, 2008, pp. 951–958.
[47] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from

Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[48] J. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc.

Am, vol. 66, no. 11, pp. 1145–1150, 1976.
[49] A. Buades, B. Coll, and J. Morel, “A Review of Image Denoising

Algorithms, with a New One,” Multiscale Modeling and Simulation,
vol. 4, no. 2, p. 490, 2005.

[50] P. Coupe, P. Yger, and C. Barillot, “Fast Non Local Means Denoising
for 3D MR Images,” Lecture Notes In Computer Science, vol. 4191, pp.
33–40, 2006.

[51] J. Darbon, A. Cunha, T. Chan, S. Osher, and G. Jensen, “Fast nonlocal
filtering applied to electron cryomicroscopy,” Biomedical Imaging: From
Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on,
pp. 1331–1334, 2008.

[52] G. Gilboa, N. Sochen, and Y. Zeevi, “Estimation of optimal PDE-based
denoising in the SNR sense,” IEEE Transactions on Image Processing,
vol. 15, no. 8, pp. 2269–2280, 2006.

[53] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE

Transactions on signal processing, vol. 54, no. 11, p. 4311, 2006.
[54] L. Denis, F. Tupin, J. Darbon, and M. Sigelle, “SAR image regularization

with fast approximate discrete minimization,” IEEE Transactions on

Image Processing, vol. 18, no. 7, pp. 1588–1600, 2009.

Charles-Alban Deledalle received the engineering
degree from Ecole Pour l’Informatique et les Tech-
niques Avancées (EPITA) and the Science & Tech-
nology master’s degree from the University Pierre
et Marie Currie (Paris 6), both in Paris in 2008. He
is currently pursuing the Ph.D. degree at Telecom
ParisTech. His main interests are image denoising,
analysis and interpretation, especially in multi-modal
synthetic aperture radar imagery.

Loı̈c Denis is assistant professor at Ecole Supérieure
de Chimie Physique Electronique de Lyon (CPE
Lyon) since 2007. He was a postdoc at Télécom
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