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Notations

T, Y, 2, vectors of C"
a, b, ¢ scalars of C
A B, C matrices of C™*"
Id : identity matrix
1=1,....mand 3 =1,....n

Matrix vector product

(Ax)l = Z Ai,kxk

(AB);; = Z A 1B

Basic properties

A(ax 4+ by) = aAx + bAy
Ald=1dA=A

Inverse (m = n)
A is said invertible, if it exists B st
AB = BA = 1d.

B is unique and called inverse of A.
We write B = A~ 1.

Adjoint and transpose

(A0 =
(A%)ji =

At c men
A* c men

Ai,j;
(Aijg)",

(Az, y) = (z, A™y)

Trace and determinant (m =n)
n n tr A =tr A*
trA:ZAi»i:Z)‘i tr AB =tr BA
= = det A* = det A

det A=][XN  det A~ = (det A)~!
=1

det AB =det Adet B
Ais invertible & detA # 0 < \; # 0, V2

Scalar products, angles and norms

n
(z,y) =z y=1a"y= Zl’kyk (dot product)

k=1

[2]* = (z, z) = ZIE% (¢ norm)
k=1

[z, )| < =]yl (Cauchy-Schwartz inequality)
(z, y) .

cos(Z(x,y)) = (angle and cosine)
[z [y]

o +yl? = ll* + lyI* + 2¢z, y) (law of cosines)

n
|z} = Z lzel?, p2=1 (¢, norm)
k=1

[z +ylp < lzlp + lylp (triangular inequality)

Orthogonality, vector space, basis, dimension

rly < (z,y)=0
vly & |z +yl? = 2] + [y]°

(Orthogonality)
(Pythagorean)

Let d vectors z; be st z; Lx;, |x;]| = 1. Define

V = Span({z;}) = {y \JaeCly= iaixi}

i=1
V is a vector space, {x;} is an orthonormal basis of V' and
d

Vyev, y=> (y, m)u

i=1
and d = dim V' is called the dimensionality of V. We have

dim(VUW) =dimV +dim W — dim(V N W)

Column/Range/Image and Kernel/Null spaces

Im[A] = {y € R™ \ 3z € R" such that y = Az}
Ker[A] = {x ¢ R" \ Az =0}

(image)
(kernel)

Im[A] and Ker[A] are vector spaces satisfying

Im[A] = Ker[A*]* and Ker[A] = Im[4*]*
rank A + dim(Ker[A]) = n
rank A = dim(Im[A])

(rank-nullity theorem)

where (matrix rank)

rank A = rank A*
rank A + dim(Ker[A*]) =m

Note also
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If A € C and e € C"( 0) satisfy
Ae = de

A is called the eigenvalue associated to the
eigenvector e of A. There are at most n distinct
eigenvalues \; and at least n linearly independent
eigenvectors ¢; (with norm 1). The set \; of n (non
necessarily distinct) eigenvalues is called the
spectrum of A (for a proper definition see
characteristic polynomial, multiplicity, eigenspace).
This set has exactly » = rank A non zero values.

Eigendecomposition

If it exists £ € C"*", and a diagonal matrix
A e C*"™ st

A= FEAE!

A is said diagonalizable and the columns of F are
the n eigenvectors e; of A with corresponding
eigenvalues A; ; = \;.

Properties of eigendecomposition

(m =n)
o If, for all 4, A;; # 0, then A is invertible and

AT = EATTETY with Al = (M)t

o If Ais Hermitian (A = A*), such decomposition
always exists, the eigenvectors of E' can be chosen
orthonormal such that F is unitary (E~! = E*), and
A\; are real.

e If Ais Hermitian (A = A*) and \; > 0, A is said
positive definite, and for all z # 0, xAz* > 0.

Eigenvalues / eigenvectors Singular value decomposition (SVD)

For all matrices A there exists two unitary matrices
UeCm™ ™ and V e C""™, and a real non-negative
diagonal matrix ¥ € R"™*" st

T
A=UXV* and A= E ORURY},
k=1
with 7 = rank A non zero singular values X, , = 0y,.

Eigendecomposition and SVD

e If A is Hermitian, the two decompositions coincide
with V =U = E and X = A.

o Let A =UXV™ be the SVD of A, then the
eigendecomposition of AA* is £ = U and A = ¥2.

SVD, image and kernel

Let A =UXV™ be the SVD of A, and assume %; ;
are ordered in decreasing order then
Im[A] = Span({w; e R™ \ie (1...7)})
Ker[A] = Span({v; e R" \i € (r+1...n)})

Moore-Penrose pseudo-inverse

The Moore-Penrose pseudo-inverse reads
AT B .
At Vst with = (R X >0,
e 0 otherwise
and is the unique matrix satisfying ATAAT = A™T
and AATA = A with ATA and AAT Hermitian.
If A is invertible, At = A~

Matrix norms

AL, = sup |Azly, |4l = maxop, |4l = >,
k

x|z p=1

JAIF =) laiP =tr A*A = "o}
k

7’7]
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Fourier analysis

“+o0

Let z : R — C such that |z(t)] dt < oco. Its

Fourier transform X : R —>_(%ois defined as

+o0 )

X (u) = Fla](u) = / z(t)e 2™t
_—’o_ooo |

X<u>6127rut du

—0o0

where u is referred to as the frequency.

Properties of continuous FT

Flax + by] = aF[z] + bF[y|
Flz(t — a)] = e 7% F[q]

Fla(at))(u) = ri'ﬂx](u/w

(Linearity)
(Shift)

(Modulation)

Fl*](u) = Fla](—u)*
+0o0

Flal(0) = / 2(t) dt

(Conjugation)

(Integration)

+oo - +oo
/_ z(t)[* dt = /_ | X (u)|* du (Parseval)
Flz™](u) = (2min)" Flz] (u) (Derivation)
Fle™ | (y) = —_ev*/a (Gaussian)

Jra

zisreal & X(e) = X(—¢)* (Real +» Hermitian)

Properties with convolutions

ey = [ as)yle =) ds

— 00

Floxy] = Flz|Fly]

(Convolution)

(Convolution theorem)

Multidimensional Fourier Transform

Fourier transform is separable over the different d
dimensions, hence can be defined recursively as

Flel = (Fio Fro...o Fa)ld]
where  Frlz|(t1... ek, ..., tq) =

]:[tk — :E(tl,...,tk,...,td)](ék)

and inherits from above properties (same for DFT).

Fourier Transform (FT)

Discrete Fourier Transform (DFT)

n—1

X, = F[l’]u _ the—i%rut/n
t=0
1 n—1 .
T = .F_l[X]t _ ﬁ Xk€z27mt/n
u=0

Or in a matrix-vector form X = Fz and z = F1X
where F, ; = e~"mk/" \We have

F*=nF~!' and U=n""?F is unitary
Properties of discrete FT
Flax + by] = aF[z| + bF|y] (Linearity)
Flai_a] = e 27w/ Flz] (Shift)
Fla'u = Flaln—u mod n (Conjugation)

(Integration)

n—1
Flzlo = Z Ty
=0

1
2 2
s = — | X

[zl < X < nlz]y

(Parseval)

1
[ Xl < lzls - and oo < — X

xis real & X, = X (Real <» Hermitian)

—u mod n

Discrete circular convolution

n
(IE * y)t = szy(t—s mod n)+1 OF T *Y = (I)ym

s=1

where (D) s = Y(t—s mod n)+1 IS @ circulant matrix
diagonalizable in the discrete Fourier basis, thus

Flz xylu = Flo]uF[Ylu

Fast Fourier Transform (FFT)

The matrix-by-vector product F'xz can be computed
in O(nlogn) operations (much faster than the
general matrix-by-vector product that required O(n?)
operations). Same for F'~! and same for
multi-dimensional signals.
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Probability and Statistics

Discrete random vectors

Kolmogorov’s probability axioms

Let  be a sample set and A an event Let X be a discrete random vector defined on N"
P[] =1, P[A] >0 E[X]; =Y KkP[X; = k]
k=0

P =Y P[A] with A;NA; =0
i1 The function fx : k — P[X = k] is called the

probability mass function (pmf) of X.

U
i=1

Basic properties

0,1], PlA]=1-P[4]

P0] =0, P[A] e
PA]<PB] if ACB Let X be a continuous random vector on C".
P[A U B] = P[A] + P[B] — P[AN B] Assume there exist fx such that, for all A C C",

PIX € A] = /AfX(x) .

Conditional probability

_ P[AN B _ Then fx is called the probability density function
P[A|B] = BB subject to P[B] >0 (pdf) of X, and
BIX] = | wfxlo)
PlA|B] = P[BILAéP[A]
g

Independence Let X and Y be two random vectors. The
covariance matrix between X and Y is defined as

Let A and B be two events, X and Y be two rv
Cov[X,Y] = E[XY"] — E[X]E[Y]".
ALB if P[AnN B] =P[A]P[B]
X1Y if (X <2)L(Y <y) X and Y are said uncorrelated if Cov[X,Y] = 0.
The variance-covariance matrix is
If X and Y admit a density, then

X1Y if fxy(z,y) = fx(@)fy(y)

. : Basic properties
Properties of Independence and uncorrelation

e The expectation is linear

Var[X] = Cov[X, X] = E[X X*] — E[X]E[X]".

P[A|B] =P[A] = ALB
X1Y = (E[XY"] = E[X]E[Y"] & Cov[X,Y] =0) ElaX + bY + ¢] = aE[X] + bE[Y] + ¢
Independence =- uncorrelation

e If X and Y are independent
correlation = dependence

uncorrelation # Independence Var[aX +bY + ¢] = a*Var[X] + b*Var[Y]

dependence - correlation e Var[X] is always Hermitian positive definite
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Multi-variate differential calculus

Partial and directional derivatives Elementary calculation rules

Let f: R™ — R™. The (7, j)-th partial derivative of dA =0
Joif it exists, is djaX +bY] = adX + bdY (Linearity)
f; (x) = lim fiz +eej) — filx) d[XY] = (dX)Y + X(dY) (Product rule)
oz, " 7 5 : a[X"] = (AX)"
where ¢; € R", (e;); =1 and (e;), =0 for k # j. dX = —X"Hdx)x
The directional derivative in the dir. d € R" is dtr[X] = tr[dX]
dz dZ dY
f(:L’Jred)—f(x) " dz _dzdr N :
Daf(z) = E_m - cR X — v dx (Leibniz's chain rule)

Classical identities
Jacobian and total derivative dtrlAX ] = tr[BA dX]

[AX
Jp = g—f = (gfl) (m x n Jacobian matrix) dtr[XTAX] = tr[X7(A" + A) dX]
v T3/ dtr[X1A] = tr[-XTAX ! dX]
df(z) = tr Bf (z) dx] (total derivative) dtr[X"] = tr[n X" dX]
’ dtr[e®] = tr[e® dX]
d|AXB| = tr[|AXB| X ! dX]
Gradient, Hessian, divergence, Laplacian A X*AX| = tr[2] X*AX [ X1 dX]
n| __ n -1
V= (8f> (Gradient) d|X"| = tr[n| X" X dX]
dri ) ; dlog [aX| = tr[X ! dX]
°f - dlog [X*X| = tr[2X+
_ _ g X*X| = tr[2X T dX]
Hy=VVf (é?xi@xj) (Hessian)

O |
div f = Vif = Z ai‘ — tr J (Divergence) Implicit function theorem

Let f: R™™™ — R™ be continuously differentiable

and f(a,b) =0 for a € R and b € R™. If 3L(a,b)
is invertible, then there exist ¢ such that g(a) = b

and for all x € R™ in the neighborhood of a

Properties and generalizations f(x,g(x)) =0

Af=divVf = Z 927 = tr Hy (Laplacian)

=1

~1
Vf= J} (Jacobian < gradient) gj (x) = (gjyc( g(m))) gxf (x,9(z))
div= -V~ (Integration by part) ' '
df(z) = tr [Jf da] (Jacob. character. 1) In a system of eguations f(z,y) = 0 with an infinite
Duf(x) = J(x) x d 0 numper of §o|_ut|ons (a:,y) IFT tells us about t_he
relative variations of x with respect to y, even in
f(z+h)=f(x) +Dnf(x) + o([h]) (st order exp.)  gityations where we cannot write down explicit
f(z+h)=f(z) + Dunf(zx) + sh*Hp(x)h + o(|h[?) solutions (i.e., y = g(z)). For instance, without
(0, )00 (i e )
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Convex optimization

Newton’s method

Conjugate gradient

Let A € C™*™ be Hermitian positive definite The Let f: R™ — R be convex and twice continuously
sequence x, defined as, ro = py = b, and differentiable then, the sequence
Tht1 = Tk + APk 0 rirn Tp1 = xp, — Hp(op) 7V f ()
wit o = N . 9
o1 = Tk — pApg PiADL converges towards a minimizer of f in O(1/k).

*
Phi1 = 1 + Brbr with B = ka_:’]:“ Subdifferential / subgradient
k

The subdifferential of a convex! function f is
Of(x) ={p\ Ve, f(z) = f(a) = (p, z — 2)}.

p € Of(x) is called a subgradient of f at x.
f:R™ — R has a L Lipschitz gradient if A point z* is a global minimizer of f iif

IVi(z) = Viwle < Lz =yl 0€ df(z").

If Vf(x) = Az, L = |A|2. If f is twice differentiable
L = sup, |H(x)|2, i.e., the highest eigenvalue of

Hy¢(x) among all possible . Proximal gradient method

Let f = g+ h with g convex and differentiable with
Convexity Lip. gradient and h convex'. Then, for 0<vy<1/L,

f:R™ — R is convex if for all z, y and A € (0,1)

fAz+ (1= Ny) < Af(z) + (1 =N f(y)

converges towards A~ ! in at most n steps.

Lipschitz gradient

If f is differentiable then Of(z) = {V f(x)}.

Tht1 = prOXWh(xk - ’ng(l’k))

converges towards a global minimizer of f where

f is strictly convex if the inequality is strict. f is o 1

convex and twice differentiable iif H¢(x) is Hermitian prox(z) = (1d +70h) " (z)
non-negative definite. f is strictly convex and twice = argmin 1“3;' — ;;||2 +vh(2)
differentiable iif H;(z) is Hermitian positive definite. : 2

If f is convex, f has only global minima if any. We is called proximal operator of f.

write the set of minima as

argmin f(z) = {z \ for all z € R"f(z) < f(2)} Convex conjugate and primal dual problem

The convex conjugate of a function f: R™ — R is

f1(2) = sup (z, 2) = f(x)

Let f : R” — R be differentiable with L Lipschitz ’

gradient then, for 0 < v < 1/L, the sequence if f is convex (and lower semi-continuous) f = f**.
Moreover, if f(z) = g(x) + h(Lz), then minimizers

Tpy1 = T — YV (T
k1 =2k — YV (@) x* of f are solutions of the saddle point problem

converges towards a stationary point z* in O(1/k)
Vf(a*) =0 (%, 2%) € args min max g(x) + (Lz, z) — h*(2)

If f is moreover convex then
/ Lz* € Oh*(2*)

2* is called dual of 2* and satisfies { L*z € 0g(z¥)

x* € argmin f(x).

x




