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Introduction

Consider

I θ a noise-free patch of N pixel values,

I x a noisy patch realization of X ∼ p(·|θ) where the pdf/pmf p is known,

I a ∈ D a template taken from a dictionary D of noise-free patches (with N pixels),

D as small as possible ⇒ represents classes of patches identical up to a radiometric transformation

x = =

︸ ︷︷ ︸
θ

+

︸ ︷︷ ︸
σn

a = ≡ , and

︸ ︷︷ ︸
equivalence class

How to match noisy patches x with templates a?

Problem statement

Contrast invariance
I Define a template matching criterion c : (x,a) 7→ c(x,a) > 0,

I The larger c(x,a), the more relevant the match between x and a,

I Consider invariance up to a family of transformation Tρ parametrized by ρ

∀X,a,ρ, c(X, Tρ(a)) = c(X,a) .

I Example (affine contrast change): Tρ(a) = Tα,β(a) = αa + β1, where 1k = 1 for all 1 ≤ k ≤ N .

Robustness to noise
I Template matching formulation:

∃ρ θ = Tρ(a) ⇒ “ x matches with a ”

I Hypotheses test (parameter test):

H0 : ∃ρ θ = Tρ(a) (null hypothesis),
H1 : ∀ρ θ 6= Tρ(a) (alternative hypothesis).

I Optimal Neyman-Pearson criterion (maximizing PD for any given PFA) is the likelihood ratio test:

L(x,a) =
p(x|θ = Tρ(a),H0)

p(x|θ,H1)
.

⇒ cannot be evaluated since ρ and θ are unknown.

How to define a suitable template matching criterion?

Typical contrast-invariant template matching

Normalized correlation:
I Most usual way to measure similarity up to an affine change of contrast:

C(x,a) =
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N
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N

∑
ak.

I such that

θ = αa + β : C
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θ 6= αa + β : C
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∣∣∣∣∣∣ = 0.07 ⇒ decide “dissimilar”

Is correlation a robust template matching criterion wrt different noise statistics?

Contrast-invariant template matching with noisy patches

Using the Generalized Likelihood Ratio (GLR):
I Replaces the unknowns ρ and θ by their maximum likelihood estimates (MLE) under each hypothesis:

G(x,a) =
supρ p(x|θ = Tρ(a),H0)

supt p(x|θ = t,H1)
=
p(x|θ = Tρ̂(a))

p(x|θ = t̂)

where ρ̂ and t̂ are the MLE of the unknown ρ and θ,

I Satisfies the contrast invariance property by construction,

I Asymptotically (wrt the SNR) optimal with constant false alarm rate (CFAR).

I Invariant upon changes of variable [Kay and Gabriel, 2003],

I May fail in low SNR conditions, where the MLE is known to behave poorly.

Using variance stabilization:
I Transform patches such that the noise component be approximately Gaussian (with constant variance),

I Example: homomorphic transform for multiplicative noise; Anscombe transform for Poisson noise.

I Given an application s which stabilizes the variance for a specific noise distribution, stabilization-based
criteria can be obtained on the output of s as:

SC(x,a) = C(s(x), s(a)) and SG(x,a) = G(s(x), s(a))

where it is assumed that s(X) ∼ N (s(θ), σ2I).

I Usually simpler to evaluate in closed-form, and then, leads to faster algorithms.

I Limited to the existence of a stabilization function s.

Proposition (GLR for Gaussian noise)

Consider that X follows an uncorrelated Gaussian distribution:

p(xk|θk) =
1√
2πσ

exp

(
−(xk − θk)2

2σ2

)
,

and consider the class of affine contrast transformations Tα,β(x) = αx + β1. In this case, we have

− log G(x,a) =
(

1− C(x,a)2
) ‖x− x̄1‖22

2σ2
.

Correlation vs GLR under Gaussian noise

I Correlation does not take into account the noise while GLR does, ex.:

− log C

 ,

 > − log C

 ,


while − logLG

 ,

 � − logLG

 ,


I In fact 0× + β “explains” better than .

Proposition (GLR for Gamma noise)

Consider that X follows a gamma distribution such that

p(xk|θk) =
LLxL−1

k

Γ(L)θLk
exp

(
−Lxk
θk

)
and consider the class of log-affine transformations Tα,β(x) = βxα where (.)α is the element-wise power
function. In this case, we have

− log G(x,a) = L

N∑
k=1

log

(
β̂aα̂k
xk

)
where α̂ and β̂ can be obtained iteratively as

α̂i+1 = α̂i −
∑
k

(
1− rk,i

)
log ak∑

k rk,i(log ak)2
and β̂i+1 =

1

N

∑
k

xk

a
α̂i
k

with rk,i = xk/(β̂ia
α̂i
k ), whatever the initialization.

Similar result for Poisson noise.

Detection performance
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Figure: (a) ROC curve obtained under Gaussian noise, (b) ROC curve obtained under gamma noise and (c) ROC curve obtained
under Poisson noise. In all experiments, the SNR is about −3dB.

I Dictionary of 196 templates of size N = 8× 8 (extracted from the image “Barbara” with k-means),

I Several noisy realizations x are generated for several radiometric transformations θ = Tρ(a),

I GLR provides the best performance followed by Gaussian GLR after variance stabilization,

I Correlation acts poorly in all situations.

Application to dictionary-based denoising

(a) (b) (c) (d)

Figure: (a) Noisy input image damaged by gamma noise (with L = 10, PSNR = 21.14). (b) Denoised image using the GLR
after variance stabilization followed by a debiasing step following [Xie et al., 2002] (PSNR = 27.42). (c) Denoised image using
the GLR adapted to gamma noise (PSNR = 27.53). (d) Image composed of the atoms of the dictionary.

Template-matching based denoising:
I The dictionary D provides a generative model of the patches x of the noisy image,

I Each patch of the image can then be estimated as:

θ̂(x) =
1

Z

∑
a∈D
G(x,a)a? with Z =

∑
a∈D
G(x,a) ,

where a? = Tρ̂(a) and ρ̂ is the MLE of ρ used in the calculation of G(x,a).

“Multi-scale” shift-invariant dictionary:
I D is composed of the set of all atoms extracted from a 128× 128 image (a.k.a., an epitome) built

following the transparent dead leaves model of [Galerne and Gousseau, 2012],

I The dictionary is then shift invariant and denoising can be performed in the Fourier domain (see
[Jost et al., 2006, Benôıt et al., 2011]) while representing information of different scales,

I GLR for the gamma law or for the Gaussian law after stabilizing the variance are both satisfactory
visually and in term of PSNR.
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