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Problem statement

Consider the convex but non-smooth Analysis Sparsity Regularization problem

x?(y, λ) ∈ argmin
x∈RN

1

2
||y − Φx||2 + λ||D∗x||1 (Pλ(y))

which aims at inverting

y = Φx0 + w

by promoting sparsity and with

I x0 ∈ RN the unknown image of interest,

I y ∈ RQ the low-dimensional noisy observation of x0,

I Φ ∈ RQ×N a linear operator that models the acquisition process,

I w ∼ N (0, σ2IdQ) the noise component,

I D ∈ RN×P an analysis dictionary, and

I λ > 0 a regularization parameter.

How to choose the value of the parameter λ?

Risk-based selection of λ

I Risk associated to λ: measure of the expected quality of x?(y, λ) wrt x0,

R(λ) = Ew||x?(y, λ)− x0||2 .
I The optimal (theoretical) λ minimizes the risk.

The risk is unknown since it depends on x0.

Can we estimate the risk solely from x?(y,λ)?

Risk estimation

I Assume y 7→ Φx?(y, λ) is weakly differentiable (a fortiori uniquely defined).

Prediction risk estimation via SURE

I The Stein Unbiased Risk Estimator (SURE):

SURE(y, λ) =||y − Φx?(y, λ)||2 − σ2Q + 2σ2 tr

(
∂Φx?(y, λ)

∂y

)
︸ ︷︷ ︸
Estimator of the DOF

is an unbiased estimator of the prediction risk [Stein, 1981]:

Ew(SURE(y, λ)) = Ew(||Φx0 − Φx?(y, λ)||2) .

Projection risk estimation via GSURE

I Let Π = Φ∗(ΦΦ∗)+Φ be the orthogonal projector on ker(Φ)⊥ = Im(Φ∗),

I Denote xML(y) = Φ∗(ΦΦ∗)+y,

I The Generalized Stein Unbiased Risk Estimator (GSURE):

GSURE(y, λ) =||xML(y)− Πx?(y, λ)||2 − σ2 tr((ΦΦ∗)+) + 2σ2 tr

(
(ΦΦ∗)+∂Φx?(y, λ)

∂y

)
is an unbiased estimator of the projection risk [Vaiter et al., 2012]

Ew(GSURE(y, λ)) = Ew(||Πx0 − Πx?(y, λ)||2)

(see also [Eldar, 2009, Pesquet et al., 2009, Vonesch et al., 2008] for similar results).

Illustration of risk estimation
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(here, x? denotes x?(y, λ) for an arbitrary value of λ)

How to estimate the quantity tr
(
(ΦΦ∗)+∂x

?(y,λ)
∂y

)
?

Main notations and assumptions

I Let I = supp(D∗x?(y, λ)) be the support of D∗x?(y, λ),

I Let J = Ic be the co-support of D∗x?(y, λ),

I Let DI be the submatrix of D whose columns are indexed by I ,

I Let sI = sign(D∗x?(y, λ))I be the subvector of D∗x?(y, λ) whose entries are indexed by I ,

I Let GJ = KerD∗J be the “cospace” associated to x?(y, λ) ,

I To study the local behaviour of x?(y, λ), we impose Φ to be “invertible” on GJ :

GJ ∩ Ker Φ = {0},
I It allows us to define the matrix

A[J ] = U(U∗Φ∗ΦU)−1U∗,
where U is a matrix whose columns form a basis of GJ ,

I In this case, we obtain an implicit equation:

x?(y, λ) solution of Pλ(y)⇔ x?(y, λ) = x̂(y, λ) , A[J ]Φ∗y − λA[J ]DIsI .

Is this relation true in a neighbourhood of (y,λ)?

Theorem (Local Parameterization)

I Even if the solutions x?(y, λ) of Pλ(y) might be
not unique, Φx?(y, λ) is uniquely defined.

I If (y, λ) 6∈ H, for (ȳ, λ̄) close to (y, λ), x̂(ȳ, λ̄)
is a solution of P(ȳ, λ̄) where

x̂(ȳ, λ̄) = A[J ]Φ∗ȳ − λ̄A[J ]DIsI .

I Hence, it allows us writing

∂Φx?(y, λ)

∂y
= ΦA[J ]Φ∗ ,

I Moreover, the DOF can be estimated by

tr

(
∂Φx?(y, λ)

∂y

)
= dim(GJ) .

Can we compute this quantity efficiently?
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Computation of GSURE

I One has for Z ∼ N (0, IdP ),

tr

(
(ΦΦ∗)+∂Φx?(y, λ)

∂y

)
= EZ(〈ν(Z), Φ∗(ΦΦ∗)+Z〉)

where, for any z ∈ RP , ν = ν(z) solves the following linear system(
Φ∗Φ DJ
D∗J 0

)(
ν
ν̃

)
=

(
Φ∗z

0

)
.

I In practice, with law of large number, the empirical mean is replaced for the expectation.

I The computation of ν(z) is achieved by solving the linear system with a conjugate gradient solver.

Numerical example

Super-resolution using (anisotropic) Total-Variation
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Compressed-sensing using multi-scale wavelet thresholding

(c) xML

(d) x?(y, λ) at the optimal λ
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Perspectives: How to efficiently minimizes GSURE(y,λ) wrt λ?
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