Contrast re-enhancement of Total-Variation regularization jointly with the Douglas-Rachford iterations Charles Deledalle¹, Nicolas Papadakis¹ and Joseph Salmon²

¹CNRS – Université Bordeaux, IMB — ²CNRS LTCI – Télécom ParisTech, Institut Mines-Télécom

Abstract

Restoration of a piece-wise constant signal can be performed using anisotropic Total-Variation (TV) regularization. Anisotropic TV may capture well discontinuities but suffers from a systematic loss of contrast. This contrast can be re-enhanced in a post-processing step known as least-square refitting. We propose here to jointly estimate the refitting during the Douglas-Rachford iterations used to produce the original TV result.

Problem statement

Consider the **anisotropic TV** regularization defined, for $\lambda > 0$, as [Rudin et al., 1992] $u^{\text{TV}} \in \operatorname*{argmin}_{u \in \mathbb{R}^N} \frac{1}{2} \| \Phi u - f \|^2 + \lambda \| \nabla u \|_1,$

which aims at recovering u_0 from its linear noisy observation

 $f = \Phi u_0 + w$

where we consider

• $u_0 \in \mathbb{R}^N$

the representation of a 2D signal,

The Douglas-Rachford sequence

Consider the splitting TV reformulation given by

 $u^{\text{TV}} \in \underset{u \in \mathbb{R}^{N}}{\operatorname{argmin}} \min_{z \in \mathbb{R}^{N \times 2}} \frac{1}{2} \| \Phi u - f \|^{2} + \lambda \| z \|_{1} + \iota_{\{z, u \ ; \ z = \nabla u\}}(z, u)$

- where ι_S is the indicator function of a set S.
- For the associated Douglas-Rachford sequence u^k given, for $\tau>0,$ as

$$\begin{cases} \mu^{k+1} = (\mathrm{Id} + \Delta)^{-1}(2u^k - \mu^k - \operatorname{div}(2z^k - \zeta^k))/2 + \mu^k/2 \\ \zeta^{k+1} = \nabla \mu^{k+1}, \\ u^{k+1} = \mu^{k+1} + \tau \Phi^t(\mathrm{Id} + \tau \Phi \Phi^t)^{-1}(f - \Phi \mu^{k+1}), \\ z^{k+1} = \Psi_{\zeta^{k+1}}(\zeta^{k+1}, \lambda) \\ \text{where} \quad \Psi_{\zeta}(\zeta, \lambda)_i = \begin{cases} 0 & \text{if } |\zeta_i| \leqslant \tau \lambda, \\ \zeta_i - \tau \lambda \operatorname{sign} \zeta_i & \text{otherwise,} \end{cases} \\ \text{converges towards a solution } u^{\mathrm{TV}} \text{ [Combettes and Pesquet, 2007].} \end{cases}$$

Can we build a stable sequence \tilde{u}^k jointly with u^k converging towards \tilde{u}^{TV} ?

- $f \in \mathbb{R}^P$
- $w \in \mathbb{R}^P$ • $\Phi \in \mathbb{R}^{P \times N}$

 $\blacktriangleright \nabla u \in \mathbb{R}^{2N}$

- the linear noisy observation of u_0 ,
 - a zero-mean noise component,
 - a linear operator accounting for a loss of information, the discrete gradient vector field of u,
- $\|\nabla u\|_1 = \sum_i |(\nabla u)_i|$ a sparsity promoting term.

Anisotropic TV is known to

- Recover piece-wise constant signals,
- \blacktriangleright Recover the discontinuities of u_0 in some cases,
- ► Suffer from a **systematic loss of contrast** [Strong and Chan, 2003].

Least-Square refitting problem

Least-square refitting re-enhances the amplitudes and preserves the discontinuities as

 $\tilde{u}^{\mathrm{TV}} \in \operatorname*{argmin}_{u \, ; \, \mathrm{supp}(\nabla u) \subset \mathrm{supp}(\nabla u^{\mathrm{TV}})} \| \Phi u - f \|^2$

where, for $x \in \mathbb{R}^{2N}$, $\operatorname{supp}(x) = \{i \in [1, 2N] ; ||x_i|| \neq 0\}$ denotes the support of x.

Theorem (Proposed joint-refitting)

Let $\alpha > 0$ be the minimum non zero value of $|(\nabla u)_i|$, $i \in [1, 2N]$. The sequence, \tilde{u}^k given, for $0 < \beta < \alpha \lambda$, as $\begin{cases} \tilde{\mu}^{k+1} = (\mathrm{Id} + \Delta)^{-1}(2\tilde{u}^k - \tilde{\mu}^k - \operatorname{div}(2\tilde{z}^k - \tilde{\zeta}^k))/2 + \tilde{\mu}^k/2, \\ \tilde{\zeta}^{k+1} = \nabla \tilde{\mu}^{k+1}, \\ \tilde{u}^{k+1} = \tilde{\mu}^{k+1} + \tau \Phi^t (\mathrm{Id} + \tau \Phi \Phi^t)^{-1}(f - \Phi \tilde{\mu}^{k+1}), \\ \tilde{z}^{k+1} = \Pi_{\zeta^{k+1}}(\tilde{\zeta}^{k+1}, \lambda) \end{cases}$ where $\Pi_{\zeta}(\tilde{\zeta}, \lambda)_i = \begin{cases} 0 & \text{if } |\zeta_i| \leq \tau \lambda + \beta, \\ \tilde{\zeta}_i & \text{otherwise,} \end{cases}$

converges towards a solution \tilde{u}^{TV} .

Our joint-refitting does not require any support identification¹.

¹ We have a similar result for the Chambolle-Pock sequence in [Deledalle et al., 2015].

Conclusion and perspectives

Computed during the Douglas-Rachford iterations, our refitting strategy

- ▶ is free of post-processing steps, such as support identification,
- ► is moreover easy to implement,
- \blacktriangleright can be used likewise for other ℓ_1 penalties, e.g., with TGV [Bredies et al., 2010].

Post-refitting, see, e.g., [Efron et al., 2004]

- Estimates $supp(\nabla u^{TV})$ and computes \tilde{u}^{TV} , e.g., with a conjugate gradient,
- However, u^{TV} is usually obtained thanks to a converging sequence u^k ,
- Unfortunately, $u^k \approx u^{\mathrm{TV}} \implies \operatorname{supp}(\nabla u^k) \approx \operatorname{supp}(\nabla u^{\mathrm{TV}})$,
- Erroneous support identifications can lead to strong numerical instabilities.

- Extensions for isotropic TV, block sparsity and non ℓ_1 -based estimators,
- Explore alternative definitions of contrast re-enhancement,
- ► Establish links with debiasing [Deledalle et al., 2015].

Experimental results

(d) Underlying image u_0

(e) Observed image f

(f) Anisotropic TV u^{TV}

(g) Post-refitting

(h) Joint-refitting

Experimental setting

- u_0 chosen from a 8bits image,
- f damaged version of u_0 by a Gaussian blur of 2px and white noise $\sigma = 20$,
- λ chosen to enforce large homogeneous regions faithful to the edges of u_0 ,
- \blacktriangleright β chosen as the smallest positive value up to machine precision.

Numerical observations

- ► TV reduces the contrast,
- ► Refitting recovers the original amplitudes and keep unchanged the discontinuities,
- Post-refitting creates suspicious oscillations due to wrong support identification,
- Joint-refitting re-enhances the contrast without introducing new artifacts.

References

- Bredies, K., Kunisch, K., and Pock, T. (2010).
 Total generalized variation.
 SIAM Journal on Imaging Sciences, 3(3):492–526.
- Combettes, P. and Pesquet, J. (2007).
- A douglas–rachford splitting approach to nonsmooth convex variational signal recovery. *IEEE Journal of Selected Topics in Signal Processing*, 1(4):564–574.
- Deledalle, C.-A., Papadakis, N., and Salmon, J. (2015).
 - On debiasing restoration algorithms: applications to total-variation and nonlocal-means. In *Scale Space and Variational Methods in Computer Vision*, pages 129–141. Springer.
- Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. Ann. Statist., 32(2):407–499.
 Rudin, L., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4):259–268.
 Strong, D. and Chan, T. (2003). Edge-preserving and scale-dependent properties of total variation regularization.
 - Inverse problems, 19(6):S165.

charles-alban.deledalle@math.u-bordeaux.fr

http://www.math.u-bordeaux.fr/~cdeledal/