Contrast re-enhancement of Total-Variation regularization
jointly with the Douglas-Rachford iterations

Charles Deledalle', Nicolas Papadakis' and Joseph Salmon?

O
ICNRS - Université Bordeaux IMB — 2CNRS LTCI — Télécom ParisTech, Institut Mines-Télécom

nstitut
athematiques de

de C

dépasser les frontiéres

rd e a u x

Abstract

Restoration of a piece-wise constant signal can be performed using anisotropic
Total-Variation (TV) regularization. Anisotropic TV may capture well discontinuities but
suffers from a systematic loss of contrast. This contrast can be re-enhanced in a
post-processing step known as least-square refitting. We propose here to jointly estimate the
refitting during the Douglas-Rachford iterations used to produce the original TV result.

Problem statement

Consider the anisotropic TV regularization defined, for A > 0, as [Rudin et al., 1992]
u'" € argmin 3| Pu — f|° + N Vul;,

ucRN
which aims at recovering u from its linear noisy observation
f=ouy+w

where we consider

> uy € RY the representation of a 2D signal,

» f€R” the linear noisy observation of wy,

» w € R a zero-mean noise component,

» Qe RN a linear operator accounting for a loss of information,
» VueR?Y the discrete gradient vector field of u,

> [Vuli=2_;[(Vu)i

a sparsity promoting term.

Anisotropic TV is known to
» Recover piece-wise constant signals,
» Recover the discontinuities of 1y in some cases,
» Suffer from a systematic loss of contrast [Strong and Chan, 2003].

Least-Square refitting problem

Least-square refitting re-enhances the amplitudes and preserves the discontinuities as

TRNNE argmin [Pu — £

u ; supp(Vu)Csupp(VulV)

where, for z € R*Y, supp(z)={i € [1,2N] ; |z;| # 0} denotes the support of .
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Post-refitting, see, e.g., [Efron et al., 2004]

» Estimates supp(Vu'Y) and computes @'V, e.g., with a conjugate gradient,

» However, u'" is usually obtained thanks to a converging sequence u",
» Unfortunately, u* ~ u'Y =4 supp(Vu") ~ supp(Vu'"),

» Erroneous support identifications can lead to strong numerical instabilities.

The Douglas-Rachford sequence

» Consider the splitting TV reformulation given by

u' € argmin min_ S|Pu— fI*+ Az + tron . mvay (2, 0)
wcRN  zZ€RNx2 7

where ¢g is the indicator function of a set .S.
» The associated Douglas-Rachford sequence u” given, for 7 > 0, as
pi = (Id + A)7H2uP — pf — div(22% — ¢F) /2 + p* /2,
CkJrl _ vlukﬂ
uk+1 _ Iuk—H 4+ T(Dt(ld + Tq)q)t)—l(f o q)lukﬂ)’
SRl \chkﬂ(clwrl, )\)
where - W¢(C, A)i = { (i — TAsign(; otherwise,

converges towards a solution u'" [Combettes and Pesquet, 2007].

Can we build a stable sequence %" jointly with u" converging towards @'"?

Let o > 0 be the minimum non zero value of |(Vu),|, i € [1,2N].

The sequence, @" given, for 0 < 8 < a\, as
P = (Id + A)~H2ar — @b — div(2zF — ) /2 4+ ¥ /2,
é’kﬂ _ V,&kﬂ
akJrl _ /lk+1 —tT(Dt(Id 4+ Tq)q)t)—1<f o (Dﬂk+1>,
21@4—1 _ H<k+1(<k+1, )\)
. ; | <
e G- {0 <A

i otherwise,

converges towards a solution " " .

Our joint-refitting does not require any support identification'.

L' We have a similar result for the Chambolle-Pock sequence in [Deledalle et al., 2015].

Conclusion and perspectives

Computed during the Douglas-Rachford iterations, our refitting strategy
» is free of post-processing steps, such as support identification,
» IS moreover easy to implement,
» can be used likewise for other /1 penalties, e.g., with TGV [Bredies et al., 2010].

(a) Noisy obs. f (b) Anisotropic TGV? (c) Joint-refitting

Perspectives
» Extensions for isotropic TV, block sparsity and non ¢;-based estimators,

» Explore alternative definitions of contrast re-enhancement,
» Establish links with debiasing [Deledalle et al., 2015].

Experimental results
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(e) Observed image f

(d) Underlying image

Experimental setting
» Uy chosen from a 8bits image,
» f damaged version of u, by a Gaussian blur of 2px and white noise o = 20,
» A chosen to enforce large homogeneous regions faithful to the edges of wy,
» 3 chosen as the smallest positive value up to machine precision.
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(f) Anisotropic TV u'"

(g) Post-refitting

(h) Joint-refitting

Numerical observations
» [V reduces the contrast,
» Refitting recovers the original amplitudes and keep unchanged the discontinuities,
» Post-refitting creates suspicious oscillations due to wrong support identification,
» Joint-refitting re-enhances the contrast without introducing new artifacts.
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