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Abstract

Restoration of a piece-wise constant signal can be performed using anisotropic
Total-Variation (TV) regularization. Anisotropic TV may capture well discontinuities but
suffers from a systematic loss of contrast. This contrast can be re-enhanced in a
post-processing step known as least-square refitting. We propose here to jointly estimate the
refitting during the Douglas-Rachford iterations used to produce the original TV result.

Problem statement

Consider the anisotropic TV regularization defined, for λ > 0, as [Rudin et al., 1992]

uTV ∈ argmin
u∈RN

1
2||Φu− f ||

2 + λ||∇u||1,

which aims at recovering u0 from its linear noisy observation

f = Φu0 + w

where we consider

I u0 ∈ RN the representation of a 2D signal,

I f ∈ RP the linear noisy observation of u0,

I w ∈ RP a zero-mean noise component,

I Φ∈RP×N a linear operator accounting for a loss of information,

I ∇u∈R2N the discrete gradient vector field of u,

I ||∇u||1 =
∑

i |(∇u)i| a sparsity promoting term.

Anisotropic TV is known to

I Recover piece-wise constant signals,

I Recover the discontinuities of u0 in some cases,

I Suffer from a systematic loss of contrast [Strong and Chan, 2003].

Least-Square refitting problem

Least-square refitting re-enhances the amplitudes and preserves the discontinuities as

ũTV ∈ argmin
u ; supp(∇u)⊂supp(∇uTV)

||Φu− f ||2

where, for x∈R2N , supp(x)={i ∈ [1, 2N ] ; ||xi|| 6= 0} denotes the support of x.
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Post-refitting, see, e.g., [Efron et al., 2004]

I Estimates supp(∇uTV) and computes ũTV, e.g., with a conjugate gradient,

I However, uTV is usually obtained thanks to a converging sequence uk,

I Unfortunately, uk ≈ uTV 6=⇒ supp(∇uk) ≈ supp(∇uTV),

I Erroneous support identifications can lead to strong numerical instabilities.

The Douglas-Rachford sequence

I Consider the splitting TV reformulation given by

uTV ∈ argmin
u∈RN

min
z∈RN×2

1
2||Φu− f ||

2 + λ||z||1 + ι{z,u ; z=∇u}(z, u)

where ιS is the indicator function of a set S.

I The associated Douglas-Rachford sequence uk given, for τ > 0, as
µk+1 = (Id + ∆)−1(2uk − µk − div(2zk − ζk))/2 + µk/2,
ζk+1 = ∇µk+1,
uk+1 = µk+1 + τΦt(Id + τΦΦt)−1(f − Φµk+1),
zk+1 = Ψζk+1(ζk+1, λ)

where Ψζ(ζ, λ)i =

{
0 if |ζi| 6 τλ,
ζi − τλ sign ζi otherwise,

converges towards a solution uTV [Combettes and Pesquet, 2007].

Can we build a stable sequence ũk jointly with uk converging towards ũTV?

Theorem (Proposed joint-refitting)

Let α > 0 be the minimum non zero value of |(∇u)i|, i ∈ [1, 2N ].
The sequence, ũk given, for 0 < β < αλ, as

µ̃k+1 = (Id + ∆)−1(2ũk − µ̃k − div(2z̃k − ζ̃k))/2 + µ̃k/2,

ζ̃k+1 = ∇µ̃k+1,
ũk+1 = µ̃k+1 + τΦt(Id + τΦΦt)−1(f − Φµ̃k+1),

z̃k+1 = Πζk+1(ζ̃k+1, λ)

where Πζ(ζ̃ , λ)i =

{
0 if |ζi| 6 τλ + β,
ζ̃i otherwise,

converges towards a solution ũTV.

Our joint-refitting does not require any support identification1.

1 We have a similar result for the Chambolle-Pock sequence in [Deledalle et al., 2015].

Conclusion and perspectives

Computed during the Douglas-Rachford iterations, our refitting strategy

I is free of post-processing steps, such as support identification,

I is moreover easy to implement,

I can be used likewise for other `1 penalties, e.g., with TGV [Bredies et al., 2010].

(a) Noisy obs. f (b) Anisotropic TGV2 (c) Joint-refitting

Perspectives

I Extensions for isotropic TV, block sparsity and non `1-based estimators,

I Explore alternative definitions of contrast re-enhancement,

I Establish links with debiasing [Deledalle et al., 2015].

Experimental results

(d) Underlying image u0 (e) Observed image f (f) Anisotropic TV uTV (g) Post-refitting (h) Joint-refitting

Experimental setting

I u0 chosen from a 8bits image,

I f damaged version of u0 by a Gaussian blur of 2px and white noise σ = 20,

I λ chosen to enforce large homogeneous regions faithful to the edges of u0,

I β chosen as the smallest positive value up to machine precision.

Numerical observations

I TV reduces the contrast,

I Refitting recovers the original amplitudes and keep unchanged the discontinuities,

I Post-refitting creates suspicious oscillations due to wrong support identification,

I Joint-refitting re-enhances the contrast without introducing new artifacts.
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