Accelerating GMM-based patch priors for image restoration: Three ingredients for a $100 \times$ speed-up

Shibin Parameswaran¹, Charles-Alban Deledalle^{1,2}, Loïc Denis³ and Truong Q. Nguyen¹ ³Univ Lyon, UJM-Saint-Etienne, France ²CNRS, Univ. Bordeaux, France, ¹UC San Diego, CA, USA,

Objectives

Our goal is to develop a fast and efficient image restoration algorithm utilizing Gaussian Mixture Model (GMM) patch priors. To this end, we perform:

Indetailed complexity analysis of Expected Patch Log-Likelihood (EPLL) algorithm

Introduce innovative approximations to accelerate EPLL by a factor of 100

Introduction

We consider the problem of estimating an image $oldsymbol{x} \in \mathbb{R}^N$ (N is the number of pixels) from noisy linear observations:

$$oldsymbol{y} = \mathcal{A}oldsymbol{x} + oldsymbol{w}$$

where:

 $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^M$ is a linear operator

 $\boldsymbol{w} \in \mathbb{R}^{M}$ is i.i.d noise component from $\mathcal{N}(0, \sigma^{2})$

The EPLL algorithm is a image restoration method that uses a Gaussian mixture model (GMM) prior on natural image patches.

$$\underset{\boldsymbol{x}}{\operatorname{argmin}} \frac{P}{2\sigma^2} \| \mathcal{A}\boldsymbol{x} - \boldsymbol{y} \|^2 - \sum_{i \in \mathcal{I}} \log p\left(\mathcal{P}_i \boldsymbol{x}\right)$$

where

 $\mathcal{I} = \{1, \ldots, N\}$ is the set of pixel indices $\mathcal{P}_i: \mathbb{R}^N \to \mathbb{R}^P$ is the patch extractor at pixel *i*. $p(\cdot) = \sum w_k \mathcal{N}(0, \Sigma_k)$ is zero-mean GMM prior

EPLL Solution

Use Half Quadratic Splitting strategy

$$\underset{\boldsymbol{x},\boldsymbol{z}_{1},...,\boldsymbol{z}_{N}}{\operatorname{argmin}} \frac{P}{2\sigma^{2}} \|\mathcal{A}\boldsymbol{x} - \boldsymbol{y}\|^{2}$$

$$\frac{\beta}{2} \sum_{i \in \mathcal{I}} \| \mathcal{P}_i \boldsymbol{x} - \boldsymbol{z}_i \|^2 - \sum_{i \in \mathcal{I}} \log p\left(\boldsymbol{z}_i\right) (1)$$

Solve (1) by an alternating optimization scheme:

$$\begin{cases} \hat{\boldsymbol{x}}_{i} \leftarrow \operatorname*{argmin}_{\boldsymbol{z}_{i}} \frac{\beta}{2} \| \mathcal{P}_{i} \hat{\boldsymbol{x}} - \boldsymbol{z}_{i} \|^{2} - \log p\left(\boldsymbol{z}_{i}\right) \end{cases}_{i=1..N}$$

$$\hat{\boldsymbol{x}} \leftarrow \operatorname*{argmin}_{\boldsymbol{x}} \frac{P}{2\sigma^{2}} \| \mathcal{A} \boldsymbol{x} - \boldsymbol{y} \|^{2} + \frac{\beta}{2} \sum_{i \in \mathcal{I}} \| \mathcal{P}_{i} \boldsymbol{x} - \hat{\boldsymbol{z}}_{i} \|^{2}.$$

$$\overset{\text{P}}{=} 1..N$$

Main steps of EPLL shown in Algorithm 1.

More than $100 \times$ speed-up obtained due to the proposed accelerations

Algorithm 1 The five steps of an EPLL iteration		Without accelerati	
for all $i \in \mathcal{I}$			
$ig ~~~ ilde{oldsymbol{z}}_i \leftarrow \mathcal{P}_i oldsymbol{x}$	(Patch extraction)	0.46s	1 %
$ \begin{aligned} k_i^{\star} \leftarrow \operatorname*{argmin}_{1 \leqslant k_i \leqslant K} \log w_{k_i}^{-2} + \log \left \boldsymbol{\Sigma}_{k_i} + \frac{1}{\beta} \mathrm{Id}_P \right + \\ \tilde{\boldsymbol{z}}_i^t \left(\boldsymbol{\Sigma}_{k_i} + \frac{1}{\beta} \mathrm{Id}_P \right)^{-1} \tilde{\boldsymbol{z}}_i \end{aligned} $	(Gaussian selection)	43.53s	
$ \left \hat{\boldsymbol{z}}_i \leftarrow \left(\boldsymbol{\Sigma}_{k_i^\star} + \frac{1}{\beta} \mathrm{Id}_P \right)^{-1} \boldsymbol{\Sigma}_{k_i^\star} \tilde{\boldsymbol{z}}_i \right. $	(Patch estimation)	0.95s	2 %
$ ilde{oldsymbol{x}} \leftarrow ig(\sum_{i \in \mathcal{I}} \mathcal{P}_i^t \mathcal{P}_i ig)^{-1} {\sum_{i \in \mathcal{I}} \mathcal{P}_i^t \hat{oldsymbol{z}}_i}$	(Patch reprojection)	0.23s	11 %
$\hat{\boldsymbol{x}} \leftarrow \left(\boldsymbol{\mathcal{A}}^{t}\boldsymbol{\mathcal{A}} + \beta\sigma^{2}\mathrm{Id}_{N}\right)^{-1}\left(\boldsymbol{\mathcal{A}}^{t}\boldsymbol{y} + \beta\sigma^{2}\tilde{\boldsymbol{x}}\right)$	Others	0.52s	1%
	Total	45.69s	

Complexity Reduction

$\mathcal{O}(NP^2K) \to \mathcal{O}(NP\bar{r}\log K/s^2)$

Acceleration strategies 95% ¦ 5% Root: Level 1: Level 2: Level 3: Level 4: 1695% 15%Level 5 32Level 6: 64 Level 7: 200Binary search tree Gaussian selection: $\mathcal{O}(NKP^2)$ Patch estimation: $\mathcal{O}(NP^2)$

Patch extraction: $\mathcal{O}(NP)$

Patch reprojection: $\mathcal{O}(NP)$

Flat trail approximation Gaussian selection: $\mathcal{O}(NKP^2)$ Patch estimation: $\mathcal{O}(NP^2)$ Patch extraction: $\mathcal{O}(NP)$ Patch reprojection: $\mathcal{O}(NP)$

Random subsampling Gaussian selection: $\mathcal{O}(NKP^2)$ Patch estimation: $\mathcal{O}(NP^2)$ Patch extraction: $\mathcal{O}(NP)$ Patch reprojection: $\mathcal{O}(NP)$

Results

(g) devignetting

Conclusion

We accelerate EPLL by a factor greater than 100 with negligible loss of image quality (<0.5 dB). The speed-up is achieved solely by reducing the algorithmic complexity of EPLL. The genericity of our acceleration strategies makes the algorithm applicable to different inverse problems without re-training.

References

image restoration.

(h) $\times 3$ super-resolution (i) 50% inpainting

[1] Zoran, Daniel and Weiss, Yair. From learning models of natural image patches to whole

In International Conference on Computer Vision, pages 479–486. IEEE, November 2011.