Accelerating GMM-based patch priors for image restoration:

Three ingredients for a 100X speed-up
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Objectives

Our goal is to develop a fast and efficient image
restoration algorithm utilizing Gaussian Mixture

Model (GMM) patch priors. To this end, we

perform:

odetailed complexity analysis of Expected Patch
Log-Likelihood (EPLL) algorithm

@introduce innovative approximations to
accelerate EPLL by a factor of 100

Introduction
We consider the problem of estimating an image

x € RY (N is the number of pixels) from noisy
linear observations:
y = Ax + w

where:

A RY — RYis a linear operator

w € R is i.i.d noise component from N (0, o)

The EPLL algorithm is a image restoration
method that uses a Gaussian mixture model

(GMM) prior on natural image patches.
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where
T ={1,..., N}is the set of pixel indices

P, RY — Ris the patch extractor at pixel 7.

K
p(-)=> wN(0,3,) is zero-mean GMM prior
k=1

Training phase

Runtime

EPLL Solution |
Use Half Quadratic Splitting strategy o
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Solve (1) by an alternating optimization scheme:
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Main steps of EPLL shown in Algorithm 1. SR

More than 100x speed-up obtained due to the proposed accelerations

Algorithm 1 The five steps of an EPLL iteration

Without accelerations

With the proposed accelerations

forall 2 € Z
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(Patch extraction) 046s 11 %

k; < argmin log w,;f + log |Z]kz. —I—%Idp| +
1<k; <K

1 (Gaussian selection) 43.53s
z; (Ek;i-l—%ldp) Zi

(Patch estimation) 095 02 %
(Patch reprojection) 0.23s |1 %

&+ (A'A+ Bo’Idy) " (A'y + Bo’z) Others 0.52s 11 %

95 % 0.23s

0.03s HE7 %

T 66 %

0.05s EE 13 %
0.01s B4 %

0.03s EH 10 %

Total 45.69s

0.35s

Complexity Reduction

O(NP°K) — O(NPrlog K/s°)

Acceleration strategies
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Gaussian selection: O(N K P?)
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Flat trail approximation

Patch estimation: O(N P?)
Patch extraction: O(N P)
Patch reprojection: O(N P)

Patch estimation: O(N P?)
Patch extraction: O(N P)
Patch reprojection: O(N P)

Gaussian selection: O(N K P?)
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Random subsampling
Gaussian selection: O(N K P?)
Patch estimation: O(N P?)
Patch extraction: O(/N P)
Patch reprojection: O(N P)
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Results
Denoising:
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30.6 / .873 (44.88s) MM 30.2 / .862 (0.36s)}

(b) EPLLc result

(a) Noisy image

(c) FEPLL result

Deblurring:

E 24.9 / .624

(d) Reference

32.7 / 924 (0.46s)
(e) Blurry image (f) FEPLL result

Other inverse problems:

Y

(g) devignetting  (h) x3 super-resolution (i) 50% inpainting

Conclusion
We accelerate EPLL by a factor greater than 100

with negligible loss of image quality (<0.5dB).
The speed-up is achieved solely by reducing the
algorithmic complexity of EPLL. The genericity of
our acceleration strategies makes the algorithm
applicable to different inverse problems without
re-training.
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