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Goal : recover an image zp € RY from its low-dimensionnal noisy observation y € RY

Linear inverse problem

We consider y = ®zo + w with & : RY — RF and w ~ N(0,021dp), e.g.:

e the deconvolution problem

y P z0 w

Y P xo w

Recover x( from y is an ill-posed inverse problem
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Motivations

Goal : recover an image zp € RY from its low-dimensionnal noisy observation y € RY

Convex regularization of the ill-posed inverse problem
e Forward model: y=dxo+w

o Inverse model: zg(y) € argmin F(z,y) + Go(z) #0 (Variational or MAP)
T ——— ~——r

data fidelity  regularization
F a proper Isc convex function, e.g., F(z,y) = %"y — dx|?

Gy a parametric proper Isc convex function

v

ex: Total-Variation Go(z) = \|Vz| where  |[Vz| =3, [(Va)k] 0={\>0}

(a) Image = (b) Gradient V&

How to select the optimal set of parameters 07
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Goal : recover an image zp € RY from its low-dimensionnal noisy observation y € RY

Parameter selection
Given a family of estimators zg(y) of xo, find the best set of parameters 6
S
&~
d
o2
[
Set of parameters 6
Goal: minimize the risk R(6) = |zg(y) — zo|?
Difficulty: ~ R(6) is unknown since zg unknown
R(0) can be “approached” if one knows the divergence divy z¢(y)

Mean:
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Unbiased Risk Estimation

e Forward model: y = ®x¢ +w, w~ N(0,0%Idp)

e Goal: Unbiasedly estimate the risk associated to

z9(y) € argmin F(x,y) + Go(x)

Ideally E, |0 (y) — zol?.

Estimates must depend solely on y

Definition (Generalized Stein’'s Unbiased Risk Estimator (GSURE))

Let zy(y) an estimator of 9. GSURE is defined as:

GSURE(zg,y) = |@*(22*) Ty — ®z(y)[* — 0 tr((22*)F) + 20 divy ((22*)F Dy (1))

Theorem ([Stein, 1981, Eldar, 2009])
Assume y — ®xg(y) is weakly differentiable. Then

E.GSURE (29, y) = Eu |Izg (y) — Tao|?

where TT = &*(®®*)1 & is the projection on Ker(®)L.

How to estimate the divergence term div, ((®®*) T ®xzq(y))?
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Generalized SURE

GSURE based on the divergence term divy ((®®*) T ®z4(y))?

Implementation [Vonesch et al., 2008]

e Use the Jacobian trace formula of the divergence
divy ((22*)F @y (y)) = tr((2D*) T8y Pxe(y))
— —

J(y)

RP*P cannot be stored in memory

e In practice, the Jacobian J(y) €

o Use the trace estimator of A € RP*P

tr A = E5 (A5,8) where &~ N(0,Idp)
e Finally, we have the approximation
k

S (U, 8

=1

divy (98%) " Pag(y)) ~

| =

where §; are k realizations of §
Compute J(y)[5;] € R as the action of J(y) on §; € RP

o P sufficiently large = good approximation even for small k (e.g., kK = 1)

Next: How to evaluate J(y)[d;] when z4(y) is given by a proximal splitting algorithm?
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Generalized SURE

GSURE based on the divergence term divy ((®®*) T ®z4(y))?

Implementation [Vonesch et al., 2008]

e Use the Jacobian trace formula of the divergence
divy ((22*)F @y (y)) = tr((2D*) T8y Pxe(y))
— —

J(y)

RP*P cannot be stored in memory

e In practice, the Jacobian J(y) €

o Use the trace estimator of A € RP*P

tr A = E5 (A5,8) where &~ N(0,Idp)
e Finally, we have the approximation
k

S (U, 8

=1

divy (98%) " Pag(y)) ~

| =

where §; are k realizations of §
Compute J(y)[5;] € R as the action of J(y) on §; € RP

o P sufficiently large = good approximation even for small k (e.g., kK = 1)

Next: How to evaluate J(y)[d;] when z4(y) is given by a proximal splitting algorithm?

Note: In the following, the dependency with 6 will be dropped for simplicity
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Generalized Forward Backward and Derivatives

Forward Backward (FB)

Solve: z(y) € argmin F(z,y) + G(x)
x
where z — F(z,y) C* with L-Lipschitz gradient
z — G(x) simple
Simple function: A Isc proper convex function G is simple if the following has a closed-form expression

1
Prox~g(z,y) = argmin 5”1‘ — 2> +9G(2), Vv >0
z

Iterative scheme: D (y) = Proxa,q(z®) — 7V, F(29, y))
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Generalized Forward Backward and Derivatives

Forward Backward (FB)

Solve: z(y) € argmin F(z,y) + G(x)
x
where z — F(z,y) C* with L-Lipschitz gradient
z — G(x) simple
Simple function: A Isc proper convex function G is simple if the following has a closed-form expression

1
Prox~g(z,y) = argmin 5”1‘ — 2> +9G(2), Vv >0
z

Iterative scheme: D (y) = Proxa,q(z®) — 7V, F(29, y))

Example (¢, sparse regularization)

1
Solve: z(y) € argmin —|®¥z — y|® + Az,
z 2 ——
F (v e

where W is, e.g., an orthogonal wavelet transform

Use: ViF(z,y) = ¥ ®* (d¥z — y),
Prox, g, () = Txar(x)

where T\ (x) is the component-wise soft-thresholding

Tp(z)i = max(0,1 — p/|lzi|)z; (a) Wavelet coefficients
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Generalized Forward Backward and Derivatives

Generalized Forward Backward (GFB) [Raguet et al., 2011]
Solve: z(y) € argmin F(z,y) + G(z) where G(z) = X2, Gi(z).
where z— F(z,vy) C! with L-Lipschitz gradient

z — Gi(x) simple

G does not have to be simple!
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Generalized Forward Backward and Derivatives

ized Forward Backward (GFB) [Raguet et al., 2011]
Solve: z(y) € argmin F(z,y) + G(z) where G(z) = X2, Gi(z).
where z— F(z,vy) C! with L-Lipschitz gradient
z — Gi(x) simple

G does not have to be simple!

Example (Block sparsity)

1
Solve: z(y) € argmin —|®¥z — y|* 4+ A|Bz| where || Bz| = >, [(Bz)k|
x 2 =
F ) o

and B extracts all blocks of size B (G is not simple)

(a) Blocks
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Generalized Forward Backward and Derivatives

Generalized Forward Backward (GFB) [Raguet et al.
Solve: z(y) € argmin F(z,y) + G(z) where G(z) = X2, Gi(z).
where z— F(z,vy) C* with L-Lipschitz gradient

z — Gi(z) simple

G does not have to be simple!

Example (Block sparsity)

1
Solve: z(y) € argmin —|®¥z — y|* 4+ A|Bz| where || Bz| = >, [(Bz)k|
x 2 =
Fv) o

and B extracts all blocks of size B (G is not simple)

1
Recast: z(y) € argmin —|d¥z — y|? + S ABiz|
x 2 ——
F (v N

where B, a partition of non-overlapping blocks

Note: ViF(z,y) = ¥ ®* (®¥z — y),
Prox, g, (z) = B Tx, (B;z) (G; is simple)
where T, (b) for b € R is the block-wise soft-thresholding
T, (b): = max(0,1 — p/[|bi]|)bi

(a) Non-overlapping blocks
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Generalized Forward Backward and Derivatives
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Generalized Forward Backward and Derivatives

Generalized Forward Backward (GFB) [Raguet et al.
Solve: z(y) € argmin F(x,y) + G(xz) where G(z) = Zinl Gi(z).
where z— F(z,vy) C* with L-Lipschitz gradient

z — Gi(x) simple

G does not have to be simple!

GFB Scheme and Derivatives

The following sequence converges to z(y)

19
LD _ 3 A
=1

ngrl) = z,“) —2® 4 Proxnya, @)

w® = 25® _ O _ g, pe® )

1
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Generalized Forward Backward and Derivatives

Generalized Forward Backward (GFB) [Raguet et al.
Solve: z(y) € argmin F(x,y) + G(xz) where G(z) = Zinl Gi(z).
where z— F(z,vy) C* with L-Lipschitz gradient

z — Gi(x) simple

G does not have to be simple!

GFB Scheme and Derivatives

The following sequence converges to z(y)

19
LD _ 3 A
=1

ngrl) = z,“) —2® 4 Proxnya, @)

w® = 25® _ O _ g, pe® )

1

Computation of GSURE associated to z*) (y) depends on £¢©) = 82(®) (y)[4]
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Generalized Forward Backward and Derivatives

Generalized Forward Backward (GFB) [Raguet et al.
Solve: z(y) € argmin F(x,y) + G(xz) where G(z) = Zinl Gi(z).
where z— F(z,vy) C* with L-Lipschitz gradient

z — Gi(x) simple

G does not have to be simple!

GFB Scheme and Derivatives

The following sequence converges to z(y) Apply the chain rule
@y _ L @) @) _ LS et
2 =23 s 3 =526
Qi Q=
Z1§4+1) _ ZZQ) _z® + PrOXn»yGi (u(@)) C§@+l) = Cl(e) _ 6(5) + ggz)(E(f))
u® =209 — 29 V1 F(®,y) 20 =269 — ([P —(FO ) + FO6)

where CEZ) = 3258)(9)[5] and QEZ) = 3Pr0xwyGi (U(E))
= = 0P ()[5] and FO =8, ViF(@?,y)

Computation of GSURE associated to z*) (y) depends on £©) = 8% (y)[4]
”
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Generalized Forward Backward and Derivatives
Generalized Forward Backward (GFB)

[Raguet et al.

Solve: z(y) € argmin F(x,y) + G(xz) where G(z) = Zinl Gi(z).
where z— F(z,vy) C* with L-Lipschitz gradient
z — Gi(x) simple
G does not have to be simple!
v
Example (Block sparsity)

® Recall that the gradient and proximal operators are

ViF(z,y) = ¥ " (2¥z — y),
Prox,g, (z) = B, T, (Bix)

® Their derivatives N ViF(z,y)[6s] = T 2"V,

82V1F(z,y)[0y] = -0 @76,

OProx.g, (z)[6z] = B; 0T (Bidz)

where 9T, (b) for b € R and §, € RP is

0 if Jbill <p
6Tp(b)[5b]-;:{ 6b,i_ﬁpbi(6bvi) otherwise
B i

where P, is the orthogonal projector on at for a € RE
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Proximal Splitting Algorithms and Derivatives

Other schemes

We have considered most known proximal splitting schemes:

e Primal: Forward-Backward and Douglas-Rachford are encompassed in GFB
e Dual: ADMM
e Primal-dual: Chambolle-Pock algorithm

v

® Choose a proximal splitting scheme
® For a given y and parameter 0, run the algorithm

e Compute iterates zéz) (v)
e Compute derivatives applied to k standard iid Gaussian vectors §;

® Compute GSURE(qué@),y) by empirical average
© Repeat 2-3 and choose 6 that minimizes GSURE
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Numerical Examples

66 Projected Risk
: * - GSURE
2 6.4 @ Optimal B
o
g 62
g
g 6
S
C 58
5.6
5.4
1 2 4 8
Size of block B 3
(b) (c) ®zo(y) (d) zp(y) at the optimal B
Figure: ® random CS matrix (P/N = 0.5). G(z) = A|Bz|. Optimization of the block size B.
x10°
. Projected Risk
* - GSURE
§ 2 @ Optimal 1
°
©
5 15
©
S
<}
f

2 4 6 8 10 12
Regularization parameter A

O] (b) y (c) = (y) at the optimal A
Figure: ® sub-sampling matrix (P/N = 0.5). G(z) = A[|[Vz|. Optimization of A.

Proximal Splitting Derivatives for Risk Esti



Numerical Examples

©

Projected Risk

b’w

* - GSURE
@ Optimal 1

»

Quadratic loss
-

o
®

o
o

1 2 3 4 5
Regularization parameter A

(a) (b) vy (c) = (y) at the optimal X\
Figure: ® Gaussian convolution (P = N, width 2px). G(z) = A|Vz|. Optimization of A.

Projected Risk
* - GSURE
True Risk

Quadratic loss

2 4 6 8 10 12
Regularization parameter A

(a) (b) ®z0(y) (c) zx(y) at the optimal X
Figure: ® random CS matrix (P/N = 0.5). G(z) = A|Vz||. Optimization of A
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Conclusion

Risk estimation for linear inverse problems

e Solver:
e Derivative:
o Risk:

e Exhaustive search:

Future work

Iterative proximal splitting algorithms
Use the chain rule to derive the sequence of iterates
The derivatives provide you the GSURE

Evaluate for different parameters and select the optimal one

e Optimize jointly several parameters

e Avoid exhaustive search
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Thanks for your attention
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