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T Croosion (Generalcas)

» Find the maximum regularization parameter for anisotropic total-variation denoising + Define fory € R" | | st ]
7 1t ]
= minimum value above which the solution remains constant . L
Amax = _min |l div y + (o (5) os| -
» well known for the Lasso, ¢eKerldiv]
but, not yet investigated in details for the total-variation 0 \ | -

Results and discussion
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» important when tuning the regularization parameter, » [hen, — l]1 ]1Ty if and on/y if A > Ao (6) 0.1 0.5 0.9 0.4 0.4 0.1 05 0.9 0.1 0.5 0.9
provides an upper-bound on the grid for which the optimal parameter is sought (a)y (b) F+K{F (c)div©y (d)divdiv'y
4 _ , Figure: (a) A 1d signal y. (b) The convolution kernel F*K{F that realizes the pseudo inversion of the
» div™: Moore-Penrose pseudo-inverse of div . . g . . 4
. . . | divergence. (c) The signal div" y on which we can read the value of A.«. (d) The signal divdiv" y
Contributions » Ker|div]: null space of div showing that one can reconstruct y from div" y up to its mean component.
» Proof: direct consequence of the Karush-Khun- Tucker condition

» Closed form expression for the one-dimensional case
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where div" = F"diag(K)F and (K); = ¢ )P it J(Kp)il” >0

» upper-bound for the two-dimensional case, » Remark. non-smooth convex optimization problem
appears reasonably tight in practice
» computation of the pseudo-inverse of the divergence,
quickly obtained by performing convolutions in the Fourier domain
» Ford =1, M\ = 5/max(div’ y) — min(div " y)],

» Anisotropic TV regularization writes, for A > 0, as [Rudin et al., 1992] 0 otherwise |
\
> *: complex conjugatex
= aig;lgin —Hy —zly + A Val; (1) » Proof: since in the 1d case, Ker|div| = Span(1,)
» Consequence: O(nlogn) using the Fast Fourier Transform (FFT) S B e | iy o
. Y=z +weR™ a noisy observation with w € R” » Remark 1. [(K+)i|” > 0 everywhere except for the zero frequency (a)y D) PR PR (c)div* y (d) div div*
. S - S _ Remark 2: -periodical v is the inci x of
> T € Rn.dn a.d—dlmenSIf)na_l signal (.ln this StUd).’ d=1or 2) m e I;V%I;;egjigz_;a‘jee;sjlg ;Sb:afnégcgilgcyfinr;afég{p(;t 31?;’96;] Figure: (a) A 2d signal . (b) The convolution kernels FJFK%F and F* K" that realizes the pseudo
» Ve e R™: discrete periodical gradient vector field of = ’ inversion of the divergence. (c) The vector field div' i on which we can read the upper-bound ;4 of

> HVQZ”l = ZZ |(VQZ)Z| a gradient-sparsity promoting term Anax- (d) The image div div' y showing that one can reconstruct y from div" 3 up to its mean component.

Difficulty in the two dimensional case

. . [ (] 200 L
Gradient / divergence / Fourier domain » Ker|div]: orthogonal of the vector space of vector fields satisfying E
V acts as a convolution which writes in the one dimensional case (d = 1) | | Kerhh?ff_s v.oltage law on all cycles of the periodical grid L 100
» dim Ker|[div] =n+1 = optimization problem becomes much harder
= resort to a fast approximation 0 —— T
V = F"diag(K|)F and div= —Vv'=F" diag(K4)F (2) Proportion a in A = aAg adel | SipE NG
CCelay . a0, 0 0 Pt ot e s
. |- denotes the adjoint Figure: (a) Evolution of |Va* | as a function of A. (b), (c), (d) Results x* of the periodical anisotropic
. F R O the discrete Fourier transform Ford—2 \ [max(dlv y) min(div+ y)] total-variation for three different values of A.
: : > — max
_ . . %—/7
» F'* = Re[F" 1 its pseudo-inverse N
» K, € C" & Ky € C" Fourier transforms of th.e.kern.el functions perfo.rming . oo diag(K) » Convolution kernel: simple triangle wave in 1d, but more complex in 2d
forward and backward finite differences respectively where div’ = ( 0 F*) diag(K) I, and (7) » divdiv™' is the projector onto the space of zero-mean signals, i.e., Im|div]
— .
) . » Apnd: computed in ~5ms
. L. : : B (K4); ; |2 |2 : :
Similarly, we define in the two dimensional case (d = 2) UN(?)@ — { TEDPHEOP if (B4l "+ [(K)il” > 0 | > Amax: computed in ~25s with [Chambolle and Pock, 2011] on Problem (5)
\ 0 otherwise » Apnd appears to be reasonably tight upper bound of A .«
v (ZZ; F(3+> (;iag(([é(¢))> I 3) (RF), = <f |(KT)2'(|£‘<_|<)§(<—)Z"2 if ()2 + [(EKL)i]? > 0 » Future work: other ¢ sparse analysis regularization and ill-posed inverse problems
tagl A — MO I otherwise |
. . . F 0 ‘
and div=F" (diag(K4) diag(K.)) (4) _ References
0 £ » Proof: by direct calculus @ with applications to imaging.
» Consequence: O(nlogn) operations using the 2D FFT ,E\g/laozate’_R' (1997). he i . J. Math. Imaging Vis., 40:120-145.
o . . . . . re-penrose inverse of the incidence matrix of a tree. @ | _
» K, e C" & K, € (C": forward and backward finite difference in horizontal direction » Remark 1: [(K+)]* + | (K.);]* > 0 except for the zero frequency Linear and Multilinear Algebra, 42(2):159-167. Eud;@ L1, OlsheQ S. af;)d them_', E. (1992|)-I .
.. ] . ] . . onlinear total variation based noise removal algorithms.
» K € C" & Ky € C" forward and backward finite difference in vertical direction » Remark 2: can be straightforwardly extended to the case where d > 2 =l Chambolle, A. and Pock, T. (2011). Physica D: Nonlinear Phenomena, 60(1);259_26%_
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