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Context

I Find the maximum regularization parameter for anisotropic total-variation denoising

≡ minimum value above which the solution remains constant

I well known for the Lasso,

but, not yet investigated in details for the total-variation

I important when tuning the regularization parameter,

provides an upper-bound on the grid for which the optimal parameter is sought

Contributions

I Closed form expression for the one-dimensional case

I upper-bound for the two-dimensional case,

appears reasonably tight in practice

I computation of the pseudo-inverse of the divergence,

quickly obtained by performing convolutions in the Fourier domain

Problem statement

I Anisotropic TV regularization writes, for λ > 0, as [Rudin et al., 1992]

x? = argmin
x∈Rn

1

2
||y − x||22 + λ||∇x||1 (1)

I y=x + w∈Rn: a noisy observation with w∈Rn

I x ∈ Rn: a d-dimensional signal (in this study d = 1 or 2)

I ∇x∈Rdn: discrete periodical gradient vector field of x

I ||∇x||1=
∑

i |(∇x)i|: a gradient-sparsity promoting term

Gradient / divergence / Fourier domain

∇ acts as a convolution which writes in the one dimensional case (d = 1)

∇ = F+ diag(K↓)F and div = −∇> = F+ diag(K↑)F (2)

I
>: denotes the adjoint

I F : Rn 7→ Cn: the discrete Fourier transform

I F+ = Re[F−1]: its pseudo-inverse

I K↓ ∈ Cn & K↑ ∈ Cn: Fourier transforms of the kernel functions performing
forward and backward finite differences respectively

Similarly, we define in the two dimensional case (d = 2)

∇ =

(
F+ 0
0 F+

)(
diag(K↓)
diag(K→)

)
F (3)

and div = F+
(
diag(K↑) diag(K←)

)(F 0
0 F

)
(4)

I K→ ∈ Cn & K← ∈ Cn: forward and backward finite difference in horizontal direction

I K↓ ∈ Cn & K↑ ∈ Cn: forward and backward finite difference in vertical direction

Proposition (General case)

I Define for y ∈ Rn,

λmax = min
ζ∈Ker[div]

‖ div+ y + ζ ‖∞ (5 )

I Then, x? =
1

n
1n1

>
n y if and only if λ > λmax (6 )

I div+: Moore-Penrose pseudo-inverse of div

I Ker[div]: null space of div

I Proof: direct consequence of the Karush-Khun-Tucker condition

I Remark: non-smooth convex optimization problem

Corollary (Mono dimensional case)

I For d = 1, λmax =
1
2[max(div+ y)−min(div+ y)],

where div+ = F+ diag(K+
↑ )F and (K+

↑ )i =

{
(K↑)

∗
i

|(K↑)i|2 if |(K↑)i|2 > 0

0 otherwise
,

I
∗: complex conjugatex

I Proof: since in the 1d case, Ker[div] = Span(1n)

I Consequence: O(n log n) using the Fast Fourier Transform (FFT)

I Remark 1: |(K↑)i|2 > 0 everywhere except for the zero frequency

I Remark 2: non-periodical case, div is the incidence matrix of a tree
whose pseudo-inverse is obtained following [Bapat, 1997]

Difficulty in the two dimensional case

I Ker[div]: orthogonal of the vector space of vector fields satisfying
Kirchhoff’s voltage law on all cycles of the periodical grid

I dimKer[div] = n + 1 ⇒ optimization problem becomes much harder
⇒ resort to a fast approximation

Corollary

I For d = 2, λmax 6 1
2[max(div+ y)−min(div+ y)]︸ ︷︷ ︸

λbnd

,

where div+ =

(
F+ 0
0 F+

)(
diag(K̃+

↑ )

diag(K̃+
←)

)
F, and (7 )

(K̃+
↑ )i =

{
(K↑)

∗
i

|(K↑)i|2+|(K←)i|2 if |(K↑)i|2 + |(K←)i|2 > 0

0 otherwise
,

(K̃+
←)i =

{
(K←)

∗
i

|(K↑)i|2+|(K←)i|2 if |(K↑)i|2 + |(K←)i|2 > 0

0 otherwise
.

I Proof: by direct calculus

I Consequence: O(n log n) operations using the 2D FFT

I Remark 1: |(K↑)i|2 + |(K←)i|2 > 0 except for the zero frequency

I Remark 2: can be straightforwardly extended to the case where d > 2

Results and discussion
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Figure: (a) A 1d signal y. (b) The convolution kernel F+K+
↑ that realizes the pseudo inversion of the

divergence. (c) The signal div+ y on which we can read the value of λmax. (d) The signal div div+ y
showing that one can reconstruct y from div+ y up to its mean component.
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Figure: (a) A 2d signal y. (b) The convolution kernels F+K+
↑ and F+K̃+

← that realizes the pseudo

inversion of the divergence. (c) The vector field div+ y on which we can read the upper-bound λbnd of
λmax. (d) The image div div+ y showing that one can reconstruct y from div+ y up to its mean component.
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(a) (b)λ = 10−3λbnd (c)λ = 10−2λbnd (d)λ = λbnd
Figure: (a) Evolution of ||∇x? ||∞ as a function of λ. (b), (c), (d) Results x? of the periodical anisotropic
total-variation for three different values of λ.

I Convolution kernel: simple triangle wave in 1d, but more complex in 2d

I div div+ is the projector onto the space of zero-mean signals, i.e., Im[div]

I λbnd: computed in ∼5ms

I λmax: computed in ∼25s with [Chambolle and Pock, 2011] on Problem (5)

I λbnd appears to be reasonably tight upper bound of λmax

I Future work: other `1 sparse analysis regularization and ill-posed inverse problems
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