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Basics of filtering

Standard filters

Two main approaches:

• Spatial domain: use the pixel grid / spatial neighborhoods

• Spectral domain: use Fourier transform, cosine transform, . . .

Spatial Spectral
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Spectral filtering



Spectral filtering – Periodical functions

A sine wave (or sinusoidal) f(t) = a cos(2πut+ ϕ) is periodical

f(t+ T ) = f(t) for T = 1/u, for all t ∈ R

and characterized by

• u : frequency (u = 1/T )

• a : amplitude

• ϕ : phase (ϕ = −2πus)

where

• T : period

• s : shift
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Spectral filtering – Periodical functions
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(b) a = 1, u = 1, ϕ = 3π/2
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(c) a = 1/2, u = 1, ϕ = 3π/2
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(d) a = 1/2, u = 2, ϕ = 3π/2

Figure 1 – Simple periodical signals
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Spectral filtering – Periodical functions
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u1 = 1, a1 = 1, ϕ1 = 3π/2 u2 = 3, a2 = 1/3, ϕ2 = 3π/2

u3 = 5, a = 1/5, ϕ1 = 3π/2 u4 = 7, a2 = 1/7, ϕ2 = 3π/2

u5 = 9, a2 = 1/9, ϕ2 = 3π/2

Figure 2 – A complex periodical signal as the sum of simple ones

f(t) = a1 cos(2πu1t+ ϕ1) + a2 cos(2πu2t+ ϕ2)
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Spectral filtering – Periodical functions
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Figure 2 – A complex periodical signal as the sum of simple ones

f(t) =
5∑
k=1

ak cos(2πukt+ ϕk)
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Spectral filtering – Periodical functions
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The function u 7→ (au, ϕu) characterizes f
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Spectral filtering – Periodical functions
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How to change representation?
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Spectral filtering – Fourier transform

Jean Baptiste Joseph Fourier

Figure 3 – (left) Sketch of Fourier by Julien Léopold Boilly. (right)

Bust of Fourier at Musée de l’Ancien Évêché in Grenoble, France.

8



Spectral filtering – Fourier transform – Periodical functions

Fourier series

• Let f : R→ R be a T -periodical function, i.e.,

f(t+ T ) = f(t), for all t ∈ R

with T > 0 as small as possible.

• Denote by u = 1/T the fundamental frequency.

• Then, under only mild assumptions on f , we have

f(t) =
a0
2

+

∞∑
k=1

ak cos (2πukt+ ϕk) with uk = u · k

• The frequencies uk = u · k are called harmonics.

• The coefficients (ak, ϕk) associated to the harmonic uk characterize f .
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Spectral filtering – Fourier transform – Periodical functions
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(a) k = 1
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(b) k = 1 to 4

11

11

-1-1

(c) k = 1 to 10
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(d) k = 1 to 20

Discontinuity

≡

Infinite number

of harmonics
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Spectral filtering – Fourier transform – Periodical functions

f(t) =
a0
2

+
∞∑
k=1

ak cos (2πukt+ ϕk)

Complex formulation

• Using Euler’s formula: cos(x) = eix+e−ix

2
(i imaginary number: i2 = −1)

f(t) =
a0
2

+

∞∑
k=1

ak
2

(
ei(2πukt+ϕk) + e−i(2πukt+ϕk)

)
=

−1∑
k=−∞

a|k|e
−iϕ|k|

2︸ ︷︷ ︸
ck

ei2πukt +
a0
2
ei2πu0t︸ ︷︷ ︸
c0

+

∞∑
k=1

a|k|e
iϕ|k|

2︸ ︷︷ ︸
ck

ei2πukt

=

+∞∑
k=−∞

cke
i2πukt with ϕ0 = 0.

• Coefficients ck = 1
2
a|k|e

sign(k)iϕ|k| ∈ C encode ak and ϕk

⇒ They characterize f .

• They are called Fourier coefficients.
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Spectral filtering – Fourier transform – Periodical functions

f(t) =

+∞∑
k=−∞

cke
i2πukt

Negative frequencies

• Introduction of negative frequencies

• As ck = 1
2
a|k|e

sign(k)iϕ|k|

• We have ck = c∗−k
• Amplitude spectrum: symmetrical
• Phase spectrum: anti-symmetrical
• Complex spectrum: Hermitian

• f as complex values: f(t) ∈ C\R ⇔ non-Hermitian complex spectrum.
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Spectral filtering – Fourier transform – Periodical functions

f(t) =

+∞∑
k=−∞

cke
i2πukt

Why the complex formulation?

f(t) = (αf1 + βf2)(t)

= αf1(t) + βf2(t)

= α

+∞∑
k=−∞

(c1)ke
i2πukt + β

+∞∑
k=−∞

(c2)ke
i2πukt

=

+∞∑
k=−∞

(αc1 + βc2)ke
i2πukt

As the coefficients c characterized f , by identification:

c = αc1 + βc2

Linear change of representation ⇒ Change of basis
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Spectral filtering – Fourier transform – Periodical functions

f(t) =

+∞∑
k=−∞

cke
i2πukt =

+∞∑
k=−∞

ckak(t)

Fourier atoms

• Functions: ak(t) = ei2πukt, for k ∈ Z.

• They are orthogonal to each other, for k 6= l:

〈ak, al〉︸ ︷︷ ︸
scalar product for

periodical functions

=

∫ T/2

−T/2
ak(t)a∗l (t)dt = 0

• They have the same finite norm:

||ak||22 =

∫ T/2

−T/2
ak(t)a∗k(t)dt = T

• In particular: ak 6= 0
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Spectral filtering – Fourier transform – Periodical functions

Proof.

• Remark that, for k 6= l, ak and al satisfy

〈ak, al〉︸ ︷︷ ︸
scalar product for
periodical function

=

∫ T/2

−T/2
ak(t)a∗l (t)dt

=

∫ T/2

−T/2
ei2πukte−i2πultdt

=

∫ T/2

−T/2
ei2πu(k−l)tdt

=

[
ei2πu(k−l)t

i2πu(k − l)

]T/2
−T/2

=
eiπ(k−l) − e−iπ(k−l)

i2πu(k − l) (Since T = 1/u)

=
sin(π(k − l))
πu(k − l) = 0 (Since k − l ∈ Z)
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Spectral filtering – Fourier transform – Periodical functions

Proof.

• Moreover for all k

〈ak, ak〉 =

∫ T/2

−T/2
ak(t)a∗k(t)dt

=

∫ T/2

−T/2
ei2πukte−i2πuktdt

=

∫ T/2

−T/2
dt

= T
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Spectral filtering – Fourier transform – Periodical functions

f(t) =

+∞∑
k=−∞

cke
i2πukt =

+∞∑
k=−∞

ckak(t)

Fourier basis

(1) Complex Fourier series:

all T -periodical functions are linear combinations of Fourier atoms ak.

(2) Fourier atoms satisfy:

ak 6= 0 and 〈ak, al〉 = 0 for k 6= l

(1)+(2) ⇒

Fourier atoms form an orthogonal basis for T -periodical functions

called Fourier basis.

What are the consequences?
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Spectral filtering – Fourier transform – Periodical functions

We can compute the coefficient ck

• Since (ak) form an orthogonal basis for T -periodical functions:

f(t) =

+∞∑
k=−∞

〈f, ak〉
||ak||22

ak(t) =

+∞∑
k=−∞

(
1

T

∫ +T/2

−T/2
f(t′)e−i2πukt

′
dt′
)
ei2πukt

• By identification

ck =
1

T

∫ +T/2

−T/2
f(t)e−i2πuktdt︸ ︷︷ ︸
F[f ]k

(Fourier transform)

• and the operation is invertible and corresponds to the Fourier series

f(t) =

+∞∑
k=−∞

cke
i2πukt

︸ ︷︷ ︸
F−1[ck](t)

(inverse Fourier transform)
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Spectral filtering – Fourier transform – Generalization

Non-periodical functions

• If f is non-periodical: no more fundamental frequency

• Cannot be characterized only by the harmonics: . . . ,−2u,−u, 0, u, 2u, . . .
• Require a continuum of frequencies: all possible u ∈ R
• Under mild assumptions on f , we get similar transforms

f̂(u) = F [f ](u) =

∫ +∞

−∞
f(t)e−i2πutdt︸ ︷︷ ︸

Fourier transform

and f(t) = F−1[f̂ ](t) =

∫ +∞

−∞
f̂(u)ei2πutdu︸ ︷︷ ︸

inverse Fourier transform

Why does it matter?

It helps at simplifying calculus,

e.g., eases to find solutions of differential equations.
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Spectral filtering – Discrete Fourier Transform (DFT)

Discrete signals

• Let f ∈ Rn be a discrete signal

• Consider it to be periodical: fk+n = fk

• It can be characterized only by its n harmonics of the form:

−dn/2e+ 1

n
, . . . ,− 2

n
,− 1

n
, 0,

1

n
,

2

n
, . . . ,

bn/2c
n

• The discrete Fourier transforms (DFT) is thus given by

f̂u = F [f ]u =

n−1∑
k=0

fke
−i2π uk

n

︸ ︷︷ ︸
Discrete Fourier transform

, u = 0 . . . n− 1

and fk = F−1[f̂ ]k =
1

n

n−1∑
u=0

f̂ue
i2π uk

n

︸ ︷︷ ︸
inverse DFT

, k = 0 . . . n− 1

Why does it matter? It allows us to do signal processing.
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Spectral filtering – 2d DFT

Discrete images

• Let f ∈ Rn1×n2 be a discrete image

• Consider it to be periodical: fk+n1,l+n2 = fk,l

• The 2d discrete Fourier transforms (DFT) is thus given by

f̂u,v = F [f ]u,v =

n1−1∑
k=0

n2−1∑
l=0

fk,le
−i2π

(
uk
n1

+ vl
n2

)
︸ ︷︷ ︸

2D DFT

and fk,l = F−1[f̂ ]k,l =
1

n1n2

n1−1∑
u=0

n2−1∑
v=0

f̂u,ve
i2π

(
uk
n1

+ vl
n2

)
︸ ︷︷ ︸

inverse 2D DFT

• The pair (u, v) represents a two-dimensional frequency.

What does it look like?
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Spectral filtering – 2d DFT

• Each point (u, v) in the Fourier domain corresponds to a sine “wave” of

frequency
√
u2 + v2 along the axis ∆ directed by the vector (u, v)

u

v

u

v
1

u2+v2

Figure 4 – 2D signals with spectrum limited only to frequencies (u, v) and (−u,−v)
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Spectral filtering – 2d DFT

=

+

+

Image = weighted sum of sine waves
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Spectral filtering – 2d DFT

• In practice: all frequencies are more or less used in different regions

Which kinds of frequencies are used in the white squares?
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Spectral filtering – 2d DFT

• Spatial frequency: measures how fast the image varies in a given direction

How do we represent the Fourier coefficients?
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Spectral filtering – 2d DFT

• Represent each Fourier coefficients on a 2d grid

• |f̂u,v|: contribution of frequency
√
u2 + v2 in the direction (u, v).

• arg f̂u,v: phase shift of frequency
√
u2 + v2 in the direction (u, v).

• Center ≡ low frequencies

• Periphery ≡ high frequencies
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Spectral filtering – 2d DFT

Example

How to interpret it?
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Spectral filtering – 2d DFT

• Amplitude spectrum highlights the “directions” of a pattern

• Edge is represented by all harmonics in its orthogonal direction

• i.e., a line in the orthogonal direction (passing through the origin)
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Spectral filtering – 2d DFT
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Spectral filtering – 2d DFT

• In general, we only represent the modulus

• Nevertheless, the phase encodes a large amount of information
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Spectral filtering – 2d DFT

Why do the vertical and horizontal directions appear so strong?
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Spectral filtering – 2d DFT

Periodization

• It is assumed that the image is periodical

• Image borders may create strong edges

• Strong vertical and horizontal directions
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Spectral filtering – 2d DFT

Periodization

• The spectrum is also periodical

• Different ways to represent it

33



Spectral filtering – 2d DFT

Recenter / Shift

• Option 1: place the zero-frequency in the middle

• Good way to visualize it

• Option 2: place the zero-frequency at top left location

• Good way to manipulate it
• Representation used by Python, Matlab, fftw3, ...
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Spectral filtering – 2d DFT

Visualization of the amplitude spectrum

• Recall that f̂u,v =

n1−1∑
k=0

n2−1∑
l=0

fk,le
−i2π

(
uk
n1

+ vl
n2

)

• Then f̂0,0 =

n1−1∑
k=0

n2−1∑
l=0

fk,l =
∑

of all intensities

←− Can be very large!

• Consequence: the dynamic is too large to be displayed correctly

• Solution: perform a punctual non-linear transform

• Classical one: use log(|f̂u,v|+ ε), ε > 0
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Spectral filtering – 2d DFT

Which one is which?
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Spectral filtering – Principle

Principle of spectral filtering

1 Apply the Fourier transform: f̂ = F [f ]

2 Extract the amplitude and phase

au,v = |f̂u,v| =
√

Re[f̂u,v]2 + Im[f̂u,v]2

and ϕu,v = arg f̂u,v = atan2(Im[f̂u,v],Re[f̂u,v])

3 Modify the amplitude spectrum (and eventually the phase spectrum)

au,v ← a′u,v and ϕu,v ← ϕ′u,v

4 Reconstruct a complex spectrum

f̂ ′u,v = a′u,ve
iϕ′u,v

5 Apply the inverse Fourier transform: f ′ = F−1[f̂ ′]

Useful only if we have a fast implementation of the Fourier transform
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Spectral filtering – Fast Fourier Transform

Discrete Fourier Transform (DFT)

f̂u =

n−1∑
k=0

fke
−i2π uk

n → Perform one loop for u = 0 to n− 1

→ Direct computation in O(n2)

2d Discrete Fourier Transform (DFT2)

• The discrete Fourier transform is directionally separable

Vertical−→
DFT

Horizontal−→
DFT

• Complexity in: O(n1n
2
2 + n2n

2
1) = O(n(n1 + n2))

• Best scenario n1 = n2 =
√
n: O(n3/2)
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Spectral filtering – Fast Fourier Transform

Fast Fourier Transform (FFT) [Cooley & Tukey, 1965]

• ∼1805: first described by Gauss (Fourier’s paper: 1807)

• Exploits symmetry of DFT for faster computation

• Computation of the discrete Fourier transform can be done in

O(n logn)

• Same for images thanks to directional separability

O(n1n2 logn2 + n2n1 logn1) = O(n(logn2 + logn1)) = O(n logn)

0 500 1000

0

5

10

15

20

25

(Source: Iasonas Kokkinos) 39



Spectral filtering – Fast Fourier Transform

FFT: Top 10 Algorithms of 20th Century!

Society for Industrial and Applied Mathematics (SIAM)

The Best of the 20th Century: Editors NameTop 10 Algorithms

May 16, 2000 Barry A Cipra

• 1946: The Metropolis Algorithm for Monte Carlo. Through the use of random processes, this algorithm

offers an efficient way to stumble toward answers to problems that are too complicated to solve exactly.

• 1947: Simplex Method for Linear Programming. An elegant solution to a common problem in planning and

decision-making.

• 1950: Krylov Subspace Iteration Method. A technique for rapidly solving the linear equations that abound in

scientific computation.

• 1951: The Decompositional Approach to Matrix Computations. A suite of techniques for numerical linear

algebra.

• 1957: The Fortran Optimizing Compiler. Turns high-level code into efficient computer-readable code.

• 1959: QR Algorithm for Computing Eigenvalues. Another crucial matrix operation made swift and practical.

• 1962: Quicksort Algorithms for Sorting. For the efficient handling of large databases.

• 1965: Fast Fourier Transform. Perhaps the most ubiquitous algorithm in use today, it breaks down

waveforms (like sound) into periodic components.

• 1977: Integer Relation Detection. A fast method for spotting simple equations satisfied by collections of

seemingly unrelated numbers.

• 1987: Fast Multipole Method. A breakthrough in dealing with the complexity of n-body calculations,

applied in problems ranging from celestial mechanics to protein folding.

(Source: Iasonas Kokkinos)
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Spectral filtering – Low-pass filter

Python demo – Low-pass filter

import numpy.fft as nf

import imagetools as im

I f = plt.imread('butterfly.png')

n1, n2 = f.shape

tf = nf.fft2(f, axes=(0, 1))

a = np.abs(tf)

phi = np.angle(tf)

u, v = im.fftgrid(n1, n2)

dist2 = u**2 + v**2

mask = dist2 <= r**2

ap = mask * a

tfp = ap * np.exp(1j * phi)

fp = np.real(nf.ifft2(tfp, axes=(0, 1)))

f

a

u v ap fp

nf.fftshift
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Spectral filtering – Low-pass filter
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Spectral filtering – Low-pass filter

Python demo – Low-pass filter
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Spectral filtering – Low-pass filter

Python demo – Low-pass filter
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Spectral filtering – Low-pass filter

Python demo – Low-pass filter
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Spectral filtering – Low-pass filter
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Spectral filtering – Low-pass filter
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Spectral filtering – Low-pass filter

Python demo – Low-pass filter

import numpy.fft as nf
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Spectral filtering – Low-pass filter

Shorter version

f = plt.imread('butterfly.png')

n1, n2 = f.shape

u, v = im.fftgrid(n1, n2)

tfp = nf.fft2(f, axes=(0, 1)) # Transform

tfp[u**2 + v**2 > r**2] = 0 # Modify

fp = np.real(mpf.ifft2(tfp, axes=(0, 1))) # Transform back

What is the influence of the radius r?

Acts similarly as a blur
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Spectral filtering – Low-pass filter

Shorter version
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Spectral filtering – High-pass filter

What if we do the opposite? (high-pass filter)

u**2 + v**2 > r**2 → u**2 + v**2 <= r**2

Acts similarly as an edge detector
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Spectral filtering – High + Low -pass filters

What if we sum the two components?

+

=

M� f̂ + (Id−M)� f̂ = f̂

+

=

F−1[M�f̂ ]+F−1[(Id−M)�f̂ ] = f

Image = Low frequencies + High frequencies

= Local averages + Edges/Textures
44



Spectral filtering – Low/High ≡ Smooth/Edges

Standard spectral filters

• Accept or reject some frequencies

• Low-pass filter: smooth the image (accept low frequencies)

• High-pass filter: preserve edges (accept high frequencies)

Is there a connection with moving averages and derivative filters?
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Spectral filtering – Spectral modulation

Spectral modulation

• Apply the Fourier transform x̂ = F [x]

• Modulate each frequency individually ŷu,v = λu,v · x̂u,v
• Apply the inverse Fourier transform y = F−1[ŷ]

(a) x (b) x̂ (c) λ (d) ŷ (e) y
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Spectral filtering – DFT in matrix form

x̂ = F [x] ŷu = λu · x̂u y = F−1[ŷ]

Matrix form in 1d

• The Fourier transform can be written as

x̂u =

n−1∑
k=0

xke
−i2π uk

n

︸ ︷︷ ︸
=F[x]u

≡ x̂ =



1 1 . . . 1

1 e
−i2π 1

n . . . e
−i2π n−1

n

1 e
−i2π 2

n . . . e
−i2π 2(n−1)

n

.

.

.

1 e
−i2π (n−1)

n . . . e
−i2π (n−1)2

n


︸ ︷︷ ︸

=F

x

• The modulation as: ŷ =


λ1

λ2

. . .

λn


︸ ︷︷ ︸

Λ

x̂

• The inverse transform as y = F−1ŷ with F−1 = 1
nF ∗.

• It follows that:

y =
1

n
F
∗
ΛFx
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Spectral filtering – DFT in matrix form

Link with circulant matrices

• Let E = 1√
n
F ∗ and E−1 = 1√

n
F , and write

y =
1

n
F ∗ΛFx = EΛE−1x

• The columns of E are of the form

ek =
1√
n

(
1, exp

(
2πik

n

)
, exp

(
4πik

n

)
, . . . , exp

(
2(n− 1)πik

n

))T
and are eigenvectors with unit norms of circulant matrices (see, last class)

• Then EΛE−1 is the eigendecomposition of a circulant matrix H

• And y = Hx is nothing else as the convolution of x by some kernel ν.

Convolutions are diagonal in the Fourier domain

Why is that important?
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Spectral filtering – Fast convolutions with FFT

FFT ⇒ Fast Convolutions

• Complexity of convolutions in spatial domain
• Limited support s× s

• Non separable: O(s2n)
• Separable: O(sn)

• Unlimited support

• Non separable: O(n2)
• Separable: O(n3/2)

• Complexity of convolutions through Fourier domain

x̂ = F [x]︸ ︷︷ ︸
O(n logn)

ŷu = λu · x̂u︸ ︷︷ ︸
O(n)

y = F−1[ŷ]︸ ︷︷ ︸
O(n logn)

⇒ O(n logn)

• Allows kernel functions to have a much larger support s× s,

• Note: Spatial implementation can still be faster for small s.

What is the link between the modulation λ and the convolution kernel ν?
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Spectral filtering – Spectrum and convolution kernels

Link between λ and ν

• The eigenvalues of a circulant matrix

H =



ν0 νn−1 νn−2 . . . ν2 ν1
ν1 ν0 νn−1 νn−2 . . . ν2

. . .

. . .

. . .

νn−1 νn−2 . . . ν2 ν1 ν0


are

λu =

n−1∑
k=0

νk exp

(
−2πiuk

n

)

= F [ν]u

• Which means: H = F−1ΛF with Λ = diag(F ν), and thus

ν ∗ x = F−1 diag(F ν)Fx

This is the Convolution theorem
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Spectral filtering – Spectrum and convolution kernels

Theorem (Convolution theorem)

Vector form

h = f ∗ g ⇔ ĥu = f̂u · ĝu

Function form

(f ∗ g)(t) = F−1(F(f) · F(g))(t)

Matrix-vector form

f ∗ g = F−1 diag(F f)F︸ ︷︷ ︸
circulant matrix

g

Take home message

Convolution in spatial domain = Product in Fourier domain

Provides a new interpretation for LTI filters

• The convolution kernel ν characterizes the filter, (impulse response)
• Its Fourier transform λ = F ν as well. (frequential response)
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Spectral filtering – Properties of the Fourier transform

Main properties

Time Continuous Discrete (periodic)

Linearity af + bg af̂ + bĝ

Real/Hermitian real Hermitian

Reverse/Conjugation f(−t) f̂∗

Convolution f ∗ g f̂ · ĝ

Auto-correlation f ? g f̂∗ · ĝ

Zero frequency
∫

/
∑

f̂(0)

Shift f(t− δ) e−i2πδuf̂(u) e−i2πδu/nf̂u

Parseval 〈f, g〉 〈f̂ , ĝ〉 1
n
〈f̂ , ĝ〉

Plancherel ||f ||2 ||f̂ ||2 1
n
||f̂ ||2

Scaling f(at) 1
|a| f̂(

u
a
) –

Differentiation dnf(t)
dtn

(2πiu)nf̂(u) –

Similar properties for multi-dimensional signals
52



Spectral filtering – Moving averages = Low pass filters

Properties of moving average filters

• Low frequencies are preserved

• High frequencies are attenuated

• Zero-frequency is always one

• Preserves the mean of pixel values
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Spectral filtering – Moving averages = Low pass filters

Boxcar filter
S

p
a

ti
a

l
d

o
m

a
in
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p
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tr
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l

d
o

m
a

in

2d cardinal sines: 1
τ2

sinc(u/τ) sinc(v/τ) (sinc(t) =
sin(t)

t
)

• Bandwidth proportional to 1/τ

• Keep some high horizontal and vertical frequencies (side lobes)

• Explains horizontal and vertical artifacts of boxcar filters
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Spectral filtering – Moving averages = Low pass filters

Diamond filter
S
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a

ti
a
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Similar to the box but rotated of 45°

• Bandwidth proportional to 1/τ

• Keep some high frequencies in diagonal directions (side lobes)

• Explains diagonal artifacts of diamond filters
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Spectral filtering – Moving averages = Low pass filters

Diskcar filter
S

p
a
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Cardinal sine in all directions

• Bandwidth proportional to 1/τ

• Keep some high frequencies (side lobes)

• No preferred direction (isotropic)
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Spectral filtering – Moving averages = Low pass filters

Gaussian filter
S

p
a

ti
a

l
d

o
m

a
in

S
p

ec
tr
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l

d
o
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a

in

F
[

1
2πτ2

e
−

(s21+s22)

2τ2

]
= e−4π2τ2(u2+v2) ≡ F [Gτ2 ] =

√
2πτ2

dG1/4π2τ2

• Bandwidth proportional to 1/τ

• High frequencies are smoothly and monotonically removed

• No preferred direction (isotropic)
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Spectral filtering – Derivative filters = High pass filters

Derivative filters = High pass filters
S

p
a

ti
a

l
d

o
m

a
in

R
ea

l
sp

ec
tr

u
m

Im
a

g
in

ar
y

sp
ec

tr
u

m

• Keep high frequencies only

• Often complex valued

• Zero frequency is null

• Subtract the mean
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Spectral filtering – Image sharpening

(a) x

(b) x̂ (c) λ = F ν (d) ŷ

-15 -10 -5 0 5 10 15

-1

0

1

2

3

4

(e) ν

(f) y

Image sharpening

• Goal: Re-enforce edges

• How:

{ • Keep low frequencies

• Amplify high frequencies

• Drawback: Amplify noise

y = x+ αDx

D: derivative filter, α > 0
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Spectral filtering – Image resizing / sub-sampling

(a) ×1 (b) ×2 (c) ×4

Spatial image resizing (sub-sampling by a factor a)

• Continuous image: f rescaled(t) = f(at)

• Discrete image, ex: f rescaled
k = (1− ak + bakc)fbakc + (ak − bakc)fdake

(linear interpolation)

• Aliasing: High frequencies lost, new frequencies created. Why?
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Spectral filtering – Image resizing / sub-sampling

(a) ×1 (b) ×4/3

Aliasing

• Superposition of high frequency sub-bands in the new resized image

• Linked with Nyquist-Shannon’s theorem:

sampling frequency should be at least double the maximum frequency

61



Spectral filtering – Image resizing / sub-sampling

Aliasing: how diagonal stripes become vertical...

How to avoid aliasing when resizing?
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Spectral filtering – Image resizing / sub-sampling

Spectral image resizing with zero-padding

• Reduction: set high frequencies to zero and reduce spectrum size

• Increase: increase spectrum size and fill new high frequencies by zeros

63



Spectral filtering – Image resizing / sub-sampling

Zero-padding: No more aliasing but unpleasant oscillations

How to avoid side lobes of the cardinal sine? (ringing/Gibbs artifacts)

64



Spectral filtering – Image resizing / sub-sampling

Zero-padding + windowing

• Not only set the high frequencies to zeros

• But modulate low frequencies by a weighting window, i.e., a blur

• Choice of the window: trade-off between ringing vs blur
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Spectral filtering – Image resizing / sub-sampling

Typical windows

• Hann window: to reduce all side lobes

w(u) = 0.5− 0.5 cos

(
2π(u+ dn/2e − 1)

n− 1

)
• Hamming window: to reduce first side lobe

w(u) = 0.54− 0.46 cos

(
2π(u+ dn/2e − 1)

n− 1

)
• Kaiser window: to choose a trade-off between blur and side lobes.

w(u) =
I0(πα

√
1−

(
2(u+dn/2e−1)

n−1
− 1
)2

I0(πα)
, α > 0

for frequencies u = −dn/2e+ 1 to bn/2c.

I0: zero-order modified Bessel function.
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Spectral filtering – Image resizing / sub-sampling

Hann window

Hann window: No more aliasing, no more ringing, but blur
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Spectral filtering – Image resizing / sub-sampling

Kaiser window

Kaiser window: No more aliasing and trade-off between ringing and blur
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Spectral filtering – Image resizing / sub-sampling

Spatial sub-sampling
Linear interpolation

Spectral sub-sampling
Zero-padding

Spectral sub-sampling
Windowing
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Spectral filtering – Image resizing / sub-sampling

Spatial sub-sampling
Linear interpolation

Spectral sub-sampling
Zero-padding

Spectral sub-sampling
Windowing
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Spectral filtering – Streaking

What about streaking?
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Spectral filtering – Streaking in CT / Radon transform

Computed tomography (CT)

Fourier slice theorem:

One projection = one line in the Fourier domain

Radon transform:

• K projections = K lines

• Capture frequencies along these lines

• Other frequencies are seen as being zero

( )
Fourier slice

theorem
x0
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Spectral filtering – Streaking in CT / Radon transform

Fusion: What is that?
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Spectral filtering – Streaking in CT / Radon transform

Use more projection angles

, . . . or even more

• As for sampling in spatial domain, there is a Nyquist barrier

• i.e., a threshold in the minimum number of lines to acquire

• below that threshold, image processing techniques must be used to fill the

missing frequencies (a sort of inpainting problem in the Fourier domain)
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Spectral filtering – Streaking in MRI

Magnetic Resonance Imaging (MRI)

• Design/Setting of the MRI machine defines a path in the Fourier domain

(called k-space)

• It captures frequencies along this path

• Other frequencies are seen as being zero
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Spectral filtering – Streaking in MRI

Feasible k-space trajectories

Radial SpiralCartesian

Ideal one

• Compressed sensing

• Select frequencies at random

• Incoherent measurements

• Not feasible yet
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Spectral filtering – Streaking in MRI

Cartesian path:

(a) 15% (b) 25% (c) 50% (d) 75% (e) 100%
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Spectral filtering – Streaking in MRI

Spiral path:

(a) 20% (b) 28% (c) 40% (d) 57% (e) 80%
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Spectral filtering – Streaking in MRI

Random path:

(a) 10% (b) 20% (c) 30% (d) 40% (e) 60%
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Questions?

Next class: heat equation / anisotropic diffusion

Sources, images courtesy and acknowledgment

• L. Condat

• B. Denis de Senneville

• A. Horodniceanu

• I. Kokkinos

• G. Peyré

• R. Otazo

• V.-T. Ta

• Wikipedia
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