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Heat equation



Heat diffusion – Motivation

?−→

• How can we remove noise from an image?

• What image can best explain this noisy observation?

• Takes inspiration from our physical world.

Best explanation is the one with maximal entropy.

• Heat, in an isolated system, evolves such that

the total entropy increases over time.
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Heat diffusion
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Heat diffusion acts as a denoiser

• Spatial fluctuations of temperatures vanish with time (maximum entropy),

• Think of pixel values as temperature,

• Can heat diffusion help us to reduce noise?
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Heat equation – Definition

Heat equation

The heat equation, a Partial Differential Equation (PDE), given by

∂x

∂t
(s, t) = α∆x(s, t) or in short

∂x

∂t
= α∆x and x(s, 0) = y(s)

+ some boundary conditions and where

• s = (s1, s2) ∈ [0, 1]2: space location

• t > 0: time location

• x(s, t) ∈ R: temperature at position s and time t

• α > 0: thermal conductivity constant

• ∆: Laplacian operator

∆ =
∂2

∂s2
1

+
∂2

∂s2
2

The rate of change is proportional to the spatial curvature of the temperature.
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Heat equation – Implementation

How to solve the heat equation?

2 solutions:

1 Heat equation −→ Discrete equation −→ Numerical scheme

2 Heat equation −−→ Continuous solution −−→ Discretization
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Heat equation – Discretization

Discretization of the working space

• Periodical boundary conditions

x(0, s2, t) = x(1, s2, t) and x(s1, 0, t) = x(s1, 1, t).

• Map the discrete grid to the continuous coordinates (s1, s2, t)

(s1, s2, t) = (iδs1 , jδs2 , kδt)

where (i, j) ∈ [0, n1]× [0, n2], k ∈ [0,m], δsi =
1

ni
and δt =

Tmax

m
.
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Heat equation – Discretization

• Then, replace function x by its discrete version:

xki,j = x(iδs1 , jδs2 , kδt)

• i: index for pixels with first coordinate s1 = iδs1

• j: index for pixels with second coordinate s2 = jδs2

• k: is an index for time t = kδt

B The notation xk is not “x to the power k” but “x at time index k”.
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Heat equation – Finite differences

Recall: we want to discretize

∂x

∂t
(s, t) = α∆x(s, t) and x(s, 0) = y(s)

Finite differences

• Replace first order derivative by forward finite difference in time

∂x

∂t
(iδs1 , jδs2 , kδt) ≈

xk+1
i,j − x

k
i,j

δt

• Replace second order derivative by central finite difference in space

∆x(iδs1 , jδs2 , kδt) ≈
xki−1,j + xki+1,j + xki,j−1 + xki,j−1 − 4xki,j

δs1δs2
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Heat equation – Finite differences

Recall: we want to discretize

∂x

∂t
(s, t) = α∆x(s, t) and x(s, 0) = y(s)

Finite differences

• Rewrite everything in matrix/vector form

∂x

∂t
(·, ·, kδt) ≈

1

δt
(xk+1 − xk) and ∆x(·, ·, kδt) ≈

1

δs1δs2
∆xk

where ∆ in the right-hand side is the discrete Laplacian.

• We get

1

δt
(xk+1 − xk) =

α

δs1δs2
∆xk and x0 = y
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Heat equation – Discrete Laplacian

∆x =
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...
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because of periodical boundary conditions.
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Heat equation – Explicit Euler scheme

Forward discretized scheme – Explicit Euler scheme

The heat equation ∂x

∂t
= α∆x and x(s, 0) = y(s)

rewrites as 1

δt
(xk+1 − xk) =

α

δs1δs2
∆xk and x0 = y

which leads to the iterative scheme, that repeats for k = 0 to m

xk+1 = xk + γ∆xk and x0 = y where γ =
αδt
δs1δs2

Convergence: |xki,j − x(iδs1 , jδs2 , kδt)| −−−−−→
δs1→0

δs2→0

δt→0

0, for all (i, j, k)

δs1 and δs2 are fixed (by the size of the image grid).

δt influences the number of iterations k used to reach t = kδt.

δt should be small enough (for convergence),

and large enough (for computation time).
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Heat equation – Explicit Euler scheme

Stability

• The discretization scheme is stable, if there exists C > 0 such that

for all (i, j, k), |xki,j | 6 C|yi,j |.

• Stability prevents the iterates from diverging.

• If moreover numerical errors do not accumulate, xk converges with k.

Courant-Friedrichs-Lewy (CFL) conditions

The sequence xk is stable if: γ =
αδt
δs1δs2

<
1

2d
where d = 2 for images

In particular we get m > 2dαTmaxn1n2

#iterations increases linearly with #pixels

⇒ for k to reach m, at least O(n2
1n

2
2) operations, i.e., it is really slow. /
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Heat equation – Explicit Euler scheme

Geometric progression

The explicit Euler scheme can be rewritten as

xk+1 = xk + γ∆xk = (Idn + γ∆)xk, (n = n1n2)

it is a geometric progression, hence: xk = (Idn + γ∆)ky

Diagonalization

• ∆ performs a periodical convolution with kernel:

0 1 0

1 −4 1

0 1 0


• Diagonal in the discrete Fourier domain: ∆ = F−1ΛF , with Λ diagonal

(a) ∆ (b) Re[F(∆)] (c) Im[F(∆)]
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Heat equation – Explicit Euler scheme

Geometric progression + Diagonalization

• The explicit Euler scheme becomes

xk = (Idn + γF−1ΛF )ky

= (F−1F + γF−1ΛF )ky

= (F−1(Id + γΛ)F )ky

= F−1(Id + γΛ)F × F−1(Id + γΛ)F × . . .× F−1(Id + γΛ)F︸ ︷︷ ︸
k times

y

= F−1 (Id + γΛ)× . . .× (Id + γΛ)︸ ︷︷ ︸
k times

F y

= F−1 (Id + γΛ)k︸ ︷︷ ︸
diagonal matrix

F y

• The explicit Euler solution is a convolution,

• Solution in O(n logn) whatever k. ,
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Heat equation – Explicit Euler scheme – Results

# Load image (assumed to be square)

x = plt.imread('assets/cat.png')

n1, n2 = x.shape

sig = 20/255

y = x + sig * np.random.randn(n1, n2)

# Create Laplacian kernel in Fourier

nu = (im.kernel('laplacian1'),

im.kernel('laplacian2'))

L = im.kernel2fft(nu, n1, n2, separable='sum')

# Define problem setting (T = m * dt)

T = 1e-4

alpha = 1

rho = .99

ds2 = 1 / (n1 * n2)

dt = rho * ds2 / (4 * alpha)

gamma = alpha * dt / ds2

m = np.round(T / dt)

# Compute explicit Euler solution

K_ee = (1 + gamma * L)**m

x_ee = im.convolvefft(y, K_ee)

CFL condition: γ = αδt
δ2s

< 1
4

⇒ δt <
δ2
s

4α

⇒ δt = ρ
δ2
s

4α
with ρ < 1

(a) x (unknown) (b) y (observation)

(c) T=10−4, ρ=0.99 (d) T=10−4, ρ=1.30
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Heat equation – Implicit Euler scheme

Backward discretized scheme – Implicit Euler scheme

If instead we choose a backward difference in time

1

δt
(xk+1 − xk) =

α

δs1δs2
∆xk+1 and x0 = y

this leads to the iterative scheme

xk+1 = (Idn − γ∆)−1xk and x0 = y.

This sequence is stable whatever γ, but requires solving a linear system. /
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Heat equation – Implicit Euler scheme

Geometric progression and diagonalization

• Geometric progression: xk = (Idn − γ∆)−ky

• Again, since ∆ = F−1ΛF is diagonal in the Fourier domain

xk = F−1(Idn − γΛ)−kF y.

• The implicit Euler solution is again a convolution.

• Can be computed in O(n logn) whatever k. ,
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Heat equation – Implicit Euler scheme

# Compute explicit Euler solution

K_ee = (1 + gamma * L)**k

x_ee = im.convolvefft(y, K_ee)

# Compute implicit Euler solution

K_ie = 1 / (1 - gamma * L)**k

x_ie = im.convolvefft(y, K_ie)

(a) x (unknown) (b) y (observation)

E
xp

lic
it

E
u

le
r

(c) T=10−4, ρ=0.99 (d) T=10−4, ρ=1.30

Im
p

lic
it

E
u

le
r

(e) T=10−4, ρ=0.99 (f) T=10−4, ρ=1.30

Q: How both schemes compare

to the continuous solution

when ρ < 1?
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Heat equation – Implementation

How to solve the heat equation?

2 solutions:

1 Heat equation −→ Discrete equation −→ Numerical scheme

2 Heat equation −−→ Continuous solution −−→ Discretization
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Heat equation – Continuous solution

Theorem

• Consider the continuous heat equation defined as

∂x

∂t
(s, t) = α∆x(s, t) and x(s, 0) = y(s)

where s ∈ Rd (no restrictions to [0, 1]d, without boundary conditions).

• The exact solution is given by the d-dimensional Gaussian convolution

x(s, t) = (y ∗ G2αt)(s) =

∫
Rd
y(s− u)

1
√

4παt
d
e−
||u||22
4αt du

(d = 2 for images).

• This is called the fundamental solution of the heat equation.
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Heat equation – Continuous solution

Proof in the 1d case.

• In the 1d case the Heat equation reads as

∂x

∂t
= α∆x

1d
= α

∂2x

∂s2
and x(s, 0) = y(s)

• Taking the spatial Fourier transform (with respect to s) in both sides gives

Fs
[
∂x

∂t

]
= αFs

[
∂2x

∂s2

]
and Fs[x](u, 0) = Fs[y](u)

⇒
∂Fs[x]

∂t
= −4π2u2α · Fs[x] ( d

nf(t)
dtn

→ (2πiu)nf̂(u))

• This is a first order differential equation, x′(t) = ax(t), whose solution is

Fs[x](u, t) = Fs[y](u) · e(−4π2αu2)t

• Products in Fourier domain corresponds to convolutions in the spatial domain,

which concludes the proof since F [Gγ2 ] =
√

2πγ2
dG1/4π2γ2

F−1
s

[
e−4π2αtu2

]
=

1
√

4παt
e−

s2

4αt = G2αt(s)
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4παt
e−

s2

4αt = G2αt(s)
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Heat equation – Continuous solution

Proof in the 1d case.

• In the 1d case the Heat equation reads as

∂x

∂t
= α∆x

1d
= α

∂2x

∂s2
and x(s, 0) = y(s)

• Taking the spatial Fourier transform (with respect to s) in both sides gives

Fs
[
∂x

∂t

]
= αFs

[
∂2x

∂s2

]
and Fs[x](u, 0) = Fs[y](u)

⇒
∂Fs[x]

∂t
= −4π2u2α · Fs[x] ( d

nf(t)
dtn

→ (2πiu)nf̂(u))

• This is a first order differential equation, x′(t) = ax(t), whose solution is

Fs[x](u, t) = Fs[y](u) · e(−4π2αu2)t

• Products in Fourier domain corresponds to convolutions in the spatial domain,

which concludes the proof since F [Gγ2 ] =
√

2πγ2
dG1/4π2γ2

F−1
s

[
e−4π2αtu2

]
=

1
√

4παt
e−

s2

4αt = G2αt(s)

21



Heat equation – Continuous solution

Proof in the 1d case.

• In the 1d case the Heat equation reads as

∂x

∂t
= α∆x

1d
= α

∂2x

∂s2
and x(s, 0) = y(s)

• Taking the spatial Fourier transform (with respect to s) in both sides gives

Fs
[
∂x

∂t

]
= αFs

[
∂2x

∂s2

]
and Fs[x](u, 0) = Fs[y](u)

⇒
∂Fs[x]

∂t
= −4π2u2α · Fs[x] ( d

nf(t)
dtn

→ (2πiu)nf̂(u))

• This is a first order differential equation, x′(t) = ax(t), whose solution is

Fs[x](u, t) = Fs[y](u) · e(−4π2αu2)t

• Products in Fourier domain corresponds to convolutions in the spatial domain,

which concludes the proof since F [Gγ2 ] =
√

2πγ2
dG1/4π2γ2

F−1
s

[
e−4π2αtu2

]
=

1
√

4παt
e−

s2

4αt = G2αt(s)

21



Heat equation – Discretization of the solution

Continuous solution for d = 2

x(s1, s2, t) =
1

4παt

+∞x

−∞
y(s1 − u, s2 − v)e−

u2+v2

4αt du dv = (y ∗ G2αt)(s1, s2)

Discretization

xki,j = x(iδs, jδs, kδt) =
1

4παkδt

+∞x

−∞
y(iδs − u, jδs − v)e

−u
2+v2

4αkδt dudv

=
δ2
s

4παδtk

+∞x

−∞
y(iδs − uδs, jδs − vδs)e

− δ
2
s(u

2+v2)

4αδtk dudv ( Change of variables:
u→ δsu and v → δsv

)

=
1

4πγk

+∞x

−∞
y((i− u)δs, (j − v)δs)e

−u
2+v2

4γk du dv (Recall: γ = αδt
δ2s

)

≈
1

4πγk

∑
u∈Z

∑
v∈Z

yi−u,j−ve
−u

2+v2

4γk

︸ ︷︷ ︸
discrete convolution

(Midpoint Riemann sum)

= (y ∗ G2γk)i,j
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Heat equation – Discretization of the solution – Python demo

# Compute explicit Euler solution

K_ee = (1 + gamma * L)**k

x_ee = im.convolvefft(y, K_ee)

# Compute implicit Euler solution

K_ie = 1 / (1 - gamma * L)**k

x_ie = im.convolvefft(y, K_ie)

# Compute continuous solution

u, v = im.fftgrid(n1, n2)

K_cs = np.exp(-(u**2 + v**2) / (4*gamma*k)) / (4*np.pi*gamma*k)

K_cs = nf.fft2(K_cs, axes=(0, 1))

x_cs = im.convolvefft(y, K_cs)
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Heat equation – Comparing the results

(a) y (observation)

T
=

1
0
−

4
T

=
1
0
−

3
T

=
1
0
−

2

(b) Explicit Euler (c) Implicit Euler (d) Continuous

The three schemes provide similar solutions in O(n logn).
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Heat equation – Comparing the convolution kernels

T
=

1
0
−

4
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(d) 1D slice

For the same choice of δt satisfying the CFL condition,

the implicit and continuous solutions have less oscillations.

All three converge with t to the same solution.
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Heat equation – Summary

Summary

• Solutions of the heat equations reduce fluctuations/details of the image,

• The continuous solution is a Gaussian convolution (LTI filter),

• Discretizations lead to near Gaussian convolutions,

• The width of the convolution kernel increases with time t,

• For t→∞, the solution is the constant mean image.

(a) t = 0 (b) t = 10−4 (c) t = 10−3 (d) t = 10−2
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Scale space

Definition (Scale space)

• A family of images x(s1, s2, t), where

• t is the scale-space parameter
• x(s1, s2, 0) = y(s1, s2) is the original image
• increasing t corresponds to coarser resolutions

• and satisfying (scale-space conditions)

• causality: coarse details are “caused” by fine details
• new details should not arise in coarse scale images

Gaussian blurring is a local averaging operation.

It does not respect natural boundaries
27



Scale space

Linear scale space

• Solutions of the heat equation define a linear scale space,

• Each scale is a linear transform/convolution of the previous one.

• Recall that Gaussians have a multi-scale property: Gγ2 ∗ Gγ2 = G2γ2 .

• Define an edge as a local extremum of the first derivative [Witkin, 1983]

1 Edge location is not preserved across the scale space,

2 Two edges may merge with increasing size,

3 An edge may not split into two with increasing size.
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Scale space

• Nonlinear filters (e.g., median filters) can be used to generate a

scale-space,
• But, they usually violate the causality condition.

Non-linear scale space

• Immediate localization: fixed edge locations

• Piece-wise smoothing: diffuse between boundaries

At all scales the image will consist of smooth regions separated by edges.

How to build such a scale-space?
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Anisotropic diffusion



Towards non-linear diffusion

The conductivity α controls the amount of smoothing per time unit

∂x

∂t
= α∆x ≡ x(s, t) = y ∗ G2αt

Image-dependent conductivity

∆ =
∂2

∂s2
1

+
∂2

∂s2
2

=
(

∂
∂s1

∂
∂s2

)( ∂
∂s1
∂
∂s2

)
= ∇T∇ = div∇

• Rewrite the heat equation as

∂x

∂t
= div(α∇x)

• Basic ideas:

• make α evolve with space/time in order to preserve edges,
• set α = 0 around edges, and α > 0 inside regions,
• encourage intra-region smoothing,
• and discourage inter-region smoothing.
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Anisotropic diffusion – Perona-Malik model

Anisotropic diffusion [Perona and Malik, 1990]

∂x

∂t
= div(g(||∇x||22)︸ ︷︷ ︸

α

∇x) with x(s1, s2, 0) = y(s1, s2)

where g : R+ → [0, 1] is decreasing and satisfies

g(0) = 1 and lim
u→∞

g(u) = 0.

• Inside regions with small gradient: fast isotropic diffusion,

• Around edges with large gradients: small diffusion,

• In fact isotropic, sometimes referred to as inhomogeneous diffusion.

(a) Heat equation / linear diffusion (b) Inhomogeneous diffusion
31



Anisotropic diffusion – Perona-Malik model

Common choices (for β > 0):

g(u) =
β

β + u
or g(u) = exp

(
−u
β

)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1
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Anisotropic diffusion – Variants

Regularized Perona-Malik model [Catté, Lions, Morel, Coll, 1992]

• Classical Perona-Malik solution may be ill-posed:

The PDE may have no solution or an infinite number of solutions,

⇒ In practice: small perturbations in y lead to strong deviations.

• Idea: smooth the conductivity field at a small cost of localization

∂x

∂t
= div(g(||∇(Gσ ∗ x)||22)∇x)

where Gσ2 is a small Gaussian kernel of width σ > 0.

(c) x0 (d) y = x0 + w (e) x400 (AD) (f) x400 (R-AD)

33



Anisotropic diffusion – Resolution schemes

General diffusion model

∂x

∂t
= A(x)x

with


• Heat equation: A(x) = ∆ = div∇
• Perona-Malik: A(x) = div g(||∇x||22)∇
• Reg. Perona-Malik: A(x) = div g(||∇(Gσ∗x)||22)∇

Except for the heat equation,

no explicit continuous solutions in general.
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Anisotropic diffusion – Resolution schemes

Resolution schemes: discretization in time

1 Explicit: xk+1 = (Id + γA(xk))xk (direct)

2 Semi-implicit: xk+1 = (Id− γA(xk))−1xk (linear system to invert)

3 Fully-implicit: xk+1 = (Id− γA(xk+1))−1xk (nonlinear)

Because A depends on xk, these are not geometric progressions.

• Need to be run iteratively,

• For explicit scheme:


• Same CFL conditions γ < 1

2d

⇒ at least O(n2) for k to reach time m.
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Anisotropic diffusion – Explicit scheme – Python example

Example (Explicit scheme for R-AD)

xk+1 = xk + γ div(g(||∇(Gσ ∗ xk)||22)∇xk)

with g : R→ R and γ <
1

2d

g = lambda u: beta / (beta + u)

nu = im.kernel('gaussian', tau=sigma, s1=2, s2=2)

# Explicit scheme for regularized anisotropic diffusion

x = y

for k in range(m):

x_conv = im.convolve(x, nu)

alpha = g(im.norm2(im.grad(x_conv)))

x = x + gamma * im.div(alpha * im.grad(x))
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Anisotropic diffusion – Explicit scheme – Results

(a) x0 (b) x5 (heat) (c) x15 (heat) (d) x30 (heat) (e) x300 (heat)

(f) y = x0 + w (g) x5 (R-AD) (h) x15 (R-AD) (i) x30 (R-AD) (j) x300 (R-AD)
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Anisotropic diffusion – Semi-implicit scheme

Example (Implicit scheme)

xk+1 = (Id− γA(xk))−1xk and converges for any γ > 0

Naive idea

• At each iteration k, build the matrix M = Id− γA(xk)

• Invert it with the function inv of Python.

Problem of the naive idea (1/2)

• M is a n× n matrix,

• If your image is n = 1024× 1024 (8Mb), this will require

sizeof(double)× n× n = 8 · 240 = 8Tb
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Anisotropic diffusion – Semi-implicit scheme

Problem of the naive idea (2/2)

• Best case scenario, you have a few Gb of RAM:

Python stops and says “Out of memory”

• Not too bad scenario, you have more than 8Tb of RAM:

computation takes forever (in general O(n3)) −→ kill Python

• Worst case scenario, you have less but close to 8Tb of RAM:

OS starts swapping and is non-responsive −→ hard reboot
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Anisotropic diffusion – Semi-implicit scheme

Take home message

• When we write on paper y = Mx (with x and y images), in your code:

never

, never, never, never build the matrix M

• What is the alternative?

• Use knowledge on the structure of M to compute y = Mx quickly

• As for the FFT: Fx = fft2(x) (you never had to build F )

• If M = 1
n


1 1 . . . 1

1 1 . . . 1
...

1 1 . . . 1

, how do I compute Mx in O(n)?

• If M is sparse (# of non-zero entries in O(n)), use sparse matrices.

Design the operator z 7→Mz rather than M
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Anisotropic diffusion – Semi-implicit scheme

But how do I compute x = M−1y if I do not build M?

• Solve the system

Mx = y

with a solver that only needs to know the operator z 7→Mz.

Conjugate gradient

• If M is square symmetric definite positive, conjugate gradient solves the

system by iteratively evaluating z 7→Mz at different locations z.

• Use im.cg. Example to solve 2x = y:

x = im.cg(lambda z: 2 * z, y)
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Anisotropic diffusion – Semi-implicit scheme

Explicit: xk+1 = (Id + γA(xk))xk Implicit: xk+1 = (Id− γA(xk))−1xk

# Explicit vs Implict scheme for regularized anisotropic diffusion

x_e = y

x_i = y

for k in range(m):

# Explicit (0 < gamma < 0.25)

x_e = rad_step(x_e, x_e, sigma, gamma, g)

# Implicit (0 < gamma)

x_i = im.cg(lambda z: rad_step(x_i, z, sigma, -gamma, g), x_i)

# One step r = (Id + gamma A(x)) z for the regularized AD

nu = im.kernel('gaussian', tau=sigma, s1=2, s2=2)

def rad_step(x, z, sigma, gamma, g):

x_conv = im.convolve(x, nu)

alpha = g(im.norm2(im.grad(x_conv)))

r = z + gamma * im.div(alpha * im.grad(z))
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Anisotropic diffusion – Semi-implicit scheme – Results
In

p
u

t

(a) σ = 20

E
xp

lic
it

(b) k = 100, γ = 0.24 (c) k = 1, γ = 0.24× 100

Im
p

lic
it

(d) k = 100, γ = 0.24 (3× slower) (e) k=1, γ=0.24×100 (2× faster)

(Note: M also block tri-diagonal⇒ Thomas algorithm can be used and is even faster)
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Anisotropic diffusion – Limitations

(a) x0 (original) (b) y = x0 + w (c) x (Perona-Malik) (d) y−x (method noise)

Behavior

• Inside regions with small gradient magnitude: fast isotropic smoothing.

• Diffusion stops around strong image gradients (structure-preserving).

• Noise on edges is not reduced by Perona-Malik solutions.

Can we be really anisotropic?
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Anisotropic diffusion – Truly anisotropic behavior?

(a) Homogeneous (b) Inhomogeneous (c) Anisotropic

• Make neighborhoods truly anisotropic.

• Reminder: ellipses in 2d = encoded by a 2× 2 sdp matrix

(rotation + re-scaling)

• Replace the conductivity by a matrix-valued function

∂x

∂t
= div(T (x)∇x︸ ︷︷ ︸

matrix vector product

).

• T maps each pixel position of x to a 2× 2 matrix.

• T (x) is called a tensor field,

• The function T should control the direction of the flow.
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Anisotropic diffusion – Truly anisotropic behavior [Weickert, 1999]

∂x

∂t
= div(T (x)∇x︸ ︷︷ ︸)

where T (x) = h[Gρ∗((∇Gσ∗x)(∇Gσ∗x)T︸ ︷︷ ︸
local covariance matrix

)]

with h

[
E

(
λ2

1

λ2
2

)
E−1

]
= E

(
g(λ2

1)

g(λ2
2)

)
E−1

︸ ︷︷ ︸
decreasing (matrix-valued) function of the eigenvalues

and E =
(
e1 e2

)
←− eigenvectors
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Anisotropic diffusion – Comparison

(a) x (P-M., 1990) (b) y−x (method noise) (c) x (Weickert, 1999) (d) y−x (method noise)

Behavior

• Inside regions with small gradient magnitude: fast smoothing,

• Around objects: diffusion aligns to anisotropic structures,

• Noise on edges reduced compared to inhomogeneous isotropic diffusion.
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Anisotropic diffusion – Illustrations

Figure 1 – (left) input y. (right) truly anisotropic diffusion

Source: A. Roussos
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Anisotropic diffusion – Illustrations

Figure 2 – (left) input y. (middle) inhomogeneous diffusion. (right) truly anisotropic.

Source: A. Roussos
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Anisotropic diffusion – Illustrations

Figure 3 – (left) input y. (middle) inhomogeneous diffusion. (right) truly anisotropic.

Source: A. Roussos
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Anisotropic diffusion – Remaining issues

• When to stop the diffusion?

• How to use that for deblurring / super-resolution / linear inverse problems?

• Non-adapted for non-Gaussian noises (e.g., impulse noise).
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(a) Input image (b) Perona-Malik (c) Conductivity
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Variational methods

Definition

A variational problem is as an optimization problem of the form

min
x

{
F (x) =

∫
Ω

f(s, x,∇x) ds

}
where

• Ω: image support (ex: [0, 1]2),

• x : Ω 7→ R: function that maps a position s to a value,

• ∇x : Ω 7→ R2: gradient of x,

• s = (s1, s2) ∈ Ω: space location,

• f(s, p, v): loss chosen for a given task,

• F : functional that maps a function to a value.

(function of a function)
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Variational methods - Tikhonov functional

Example (Tikhonov functional)

• Consider the inverse problem y = H(x) + w, with H linear.

• The Tikhonov functional F is, for τ > 0, defined as

F (x) =
1

2

∫
Ω

(H(x)(s)− y(s))2 + τ ||∇x(s)||22 ds

or, in short, we write

=
1

2

∫
Ω

(H(x)− y)2︸ ︷︷ ︸
data fit

+τ ||∇x||22︸ ︷︷ ︸
smoothing

ds

• Look for x such that its degraded version H(x) is close to y.

• But, discourage x to have large spatial variations.

• τ : regularization parameter (trade-off).
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Variational methods - Tikhonov functional

Pick the image x with smallest: Data-fit + Smoothness
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Variational methods - Tikhonov functional

F (x) =
1

2

∫
Ω

(H(x)− y)2︸ ︷︷ ︸
data fit

+ τ ||∇x||22︸ ︷︷ ︸
smoothing

ds

Example (Tikhonov functional)

• The image x is forced to be close to the noisy image y through H, but the

amplitudes of its gradient are penalized to avoid overfitting the noise.

• The parameter τ > 0 controls the regularization.

• For τ → 0, the problem becomes ill-posed/ill-conditioned,

noise remains and may be amplified.

• For τ →∞, x tends to be constant (depends on boundary conditions).
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Variational methods - Tikhonov functional

(a) Low resolution y

Tikhonov regularization for × 16 super-resolution

(b) τ = 0 (c) Small τ (d) Good τ (e) High τ (f) τ →∞
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Variational methods

How to solve this variational problem?

2 solutions:

1 Functional −→ Discretization −→ Numerical scheme

2 Functional −→ PDE −→ Discretization & Euler schemes

(we won’t discuss it, cf., Euler-Lagrange equation)
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2 solutions:
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Variational methods – Smooth optimization

Discretization of the functional

min
x

{
F (x) =

n∑
k=1

f(k, x,∇x)

}

• n: number of pixels,

• k: pixel index, corresponding to location sk,

• x ∈ Rn: discrete image,

• ∇x: discrete image gradient,

• F : Rn → R: function of a vector.

• Classical optimization problem,

• Look for a vector x that cancels the gradient of F ,

• If no explicit solutions, use gradient descent.
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Variational methods – Smooth optimization

Lipschitz gradient

• A differentiable function F has L Lipschitz gradient, if

||∇F (x1)−∇F (x2)||2 6 L||x1 − x2||2, for all x1, x2 .

• The mapping x 7→ ∇F (x) is necessarily continuous.

• If F is twice differentiable

L = sup
x
||∇2F (x)︸ ︷︷ ︸

Hessian matrix of F

||2.

where for a matrix A, its `2-norm ||A||2 is its maximal singular value.
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Variational methods – Smooth optimization

Be careful:

• ∇x ∈ Rn×2 is a 2d discrete vector field,

corresponding to the discrete gradient of the image x.

• (∇x)k ∈ R2 is a 2d vector: the discrete gradient of x at location sk.

• ∇F (x) ∈ Rn is the (continuous) gradient of F at x.

• (∇F (x))k ∈ R: variation of F for an infinitessimal variation of the pixel value xk.
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Variational methods – Smooth optimization

Gradient descent

• Let F be a real function, differentiable and lower bounded with a L

Lipschitz gradient. Then, whatever the initialization x0, if 0 < γ < 2/L,

the sequence

xk+1 = xk − γ∇F (xk) ,

converges to a stationary point x? (i.e., it cancels the gradient)

∇F (x?) = 0 .

• The parameter γ is called the step size.

• A too small step size γ leads to slow convergence.

• For 0 < γ < 2/L, the sequence F (xk) decays with a rate in O(1/k).
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Variational methods – Smooth optimization

These two curves cross at x? such that ∇F (x?) = 0
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Variational methods – Smooth optimization

Here γ is small: slow convergence

63



Variational methods – Smooth optimization

γ a bit larger: faster convergence
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Variational methods – Smooth optimization

γ ≈ 1/L even larger: around fastest convergence
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Variational methods – Smooth optimization

γ a bit too large: convergence slows down
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Variational methods – Smooth optimization

γ too large: convergence too slow again
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Variational methods – Smooth optimization

γ > 2/L: divergence
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Variational methods – Smooth optimization

Gradient descent for convex function

• If moreover F is convex

F (λx1 + (1− λ)x2) 6 λF (x1) + (1− λ)F (x2), ∀x1, x2, λ ∈ (0, 1) ,

then, the gradient descent converges towards a global minimum

x? ∈ argmin
x

F (x).

• Note: All stationary points are global minimum (non necessarily unique).
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Variational methods – Smooth optimization

One-dimension

Two-dimensions

*

*

*

*
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Variational methods – Smooth optimization

Example (Tikhonov functional (1/6))

• The functional F is

F (x) =
1

2

∫
Ω

(H(x)− y)2︸ ︷︷ ︸
data fit

+τ ||∇x||22︸ ︷︷ ︸
smoothing

ds .

• Its discretization leads to

F (x) =
1

2

∑
k

((Hx)k − yk)2 +
τ

2

∑
k

||(∇x)k||22

=
1

2
||Hx− y||22 +

τ

2
||∇x||22,2

• `2,2/Frobenius norm of a matrix:

||A||22,2 =
∑
k

||Ak||22 =
∑
k

∑
l

A2
kl = trA∗A = 〈A, A〉 .

• Scalar product between matrices: trA∗B = 〈A, B〉.
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Variational methods – Smooth optimization

F (x) =
1

2
||Hx− y||22 +

τ

2
||∇x||22,2

Example (Tikhonov functional (2/6))

• This function is differentiable and convex, since

• If f convex, x 7→ f(Ax+ b) is convex,
• Norms are convex,
• Quadratic functions are convex,
• Compositions of convex non-decreasing functions (left) and convex

functions (right) are convex.
• Sums of convex functions are convex.

• We can solve this problem using gradient descent.
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Variational methods – Smooth optimization

F (x) =
1

2
||Hx− y||22 +

τ

2
||∇x||22,2

Example (Tikhonov functional (3/6))

• Note that ||∇x||22,2 = 〈∇x, ∇x〉 = 〈x, − div∇x〉 = −〈x, ∆x〉, then

F (x) =
1

2
(||Hx||2 + ||y||2 − 2 〈Hx, y〉)− τ

2
〈x, ∆x〉

=
1

2
(〈x, H∗Hx〉+ ||y||2 − 2 〈x, H∗y〉)− τ

2
〈x, ∆x〉

• The gradient is thus given by

∇F (x) =
1

2
((H∗H + H∗H)x− 2H∗y − τ(∆ + ∆∗)x)

= H∗(Hx− y)− τ∆x

Note: ∇〈x, Ay〉 = Ay and ∇〈x, Ax〉 = (A + A∗)x

69



Variational methods – Smooth optimization

Example (Tikhonov functional (4/6))

• The gradient descent reads as

xk+1 = xk − γ∇F (xk)

= xk − γ(H∗(Hxk − y)− τ∆xk)

with γ < 2
L

where L = ||H∗H − τ∆||2.

• Triangle inequality: L 6 ||H||22 + τ4d since ||∆||2 = 4d.

• For τ →∞ and x0 = y, this converges to the explicit Euler scheme for the

Heat equation. The condition γ < 2
L

is equivalent to the CFL condition.

Solutions of the Heat equation tend to

minimize the smoothing term.

This explains why at convergence the Heat equation provides constant

solutions (when using periodical boundary solutions).

70



Variational methods – Smooth optimization

Example (Tikhonov functional (5/6))

xk+1 = xk − γ(H∗(Hxk − y)︸ ︷︷ ︸
retroaction

−τ∆xk)

• The retroaction allows to remain close to the observation.

• Unlike the solution of the Heat equation,

this numerical scheme converges to a solution of interest.

• Classical stopping criteria:

• fixed number m of iterations (k = 1 to m),
• |F (xk+1)− F (xk)|/|F (xk)| < ε, or
• ||xk+1 − xk||/||xk|| < ε.

Where does Tikhonov regularization converge to?
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Variational methods

Example (Tikhonov regularization (6/6))

• Explicit solution

∇F (x) = H∗(Hx− y)− τ∆x = 0

⇔

x? = (H∗H − τ∆)−1H∗y

• Can be directly solved by conjugate gradient.

• Tikhonov regularization is linear (non-adaptive).

• If H is a blur, this is a convolution by a sharpening kernel (LTI filter).

How to incorporate inhomogeneity à la Perona-Malik?
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Variational methods - Robust regularization

Use robust regularizers to pick the good candidate
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Variational methods – Robust regularization

Example (Robust regularization (1/2))

F (x) =
1

2

∫
Ω

(Hx− y)2︸ ︷︷ ︸
data fit

+τ G(||∇x||22)︸ ︷︷ ︸
regularization

ds

• After discretization, its gradient is given by

∇F (x) = H∗(Hx− y)− τ div(g(||∇x||22)∇x)

where g(u) = G′(u).

• The gradient descent becomes

xk+1 = xk − γ(H∗(Hxk − y)︸ ︷︷ ︸
retroaction

−τ div(g(||∇xk||22)∇xk) .

Without the retroaction term (τ →∞),

this is exactly the explicit Euler scheme for the anisotropic diffusion.

74



Variational methods – Robust regularization

(a) Low resolution y

Robust regularization for × 16 super-resolution

(b) Tiny τ (c) Small τ (d) Good τ (e) High τ (f) Huge τ
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Variational methods – Robust regularization

(a) Low resolution y

Tikhonov regularization for × 16 super-resolution

(b) Tiny τ (c) Small τ (d) Good τ (e) High τ (f) Huge τ
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Variational methods – Robust regularization

What are the choices of G,

leading to the choice of Perona and Malik?

Example (Robust regularization (2/2))

G(u) = u ⇒ g(u) = 1 (Heat)

G(u) = β log(β + u) ⇒ g(u) =
β

β + u
(AD)

G(u) = β

(
1− exp

(
−u
β

))
⇒ g(u) = exp

(
−u
β

)
(AD)
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Variational methods – Robust regularization

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

1

2

3
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5

• Tikhonov (blue) is convex:

⇒ global minimum ,
• huge penalization for large gradients: does not allow for edges,

⇒ smooth solutions. /

• The other two are non-convex:

⇒ stationary point depending on the initialization /
• small penalization for large gradients: allows for edges (robust),

⇒ sharp solutions. ,
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Total-Variation



Total-Variation

Can we take the best of both worlds?

Total-Variation (TV) or ROF model [Rudin, Osher, Fatemi, 1992]

F (x) =

∫
Ω

1

2
(Hx− y)2 + τ ||∇x||2 ds TV(x) =

∫
Ω

||∇x||2 ds

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

2

3

4

5

• Tightest convex penalty. • Convex, robust and induces sparsity.
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Total-Variation – One-dimensional case

One-dimensional case

F (x) =
1

2

∫
(Hx− y)2 + τ |∇x| ds

1d Total-Variation

• Its discretization leads to

F (x) =
1

2
||Hx− y||22 +

τ

2

∑
k

|(∇x)k|

=
1

2
||Hx− y||22 +

τ

2
||∇x||1

• `p norm of a vector:

||v||p =

(∑
k

|vk|p
)1/p
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Total-Variation – One-dimensional case

S
o
u
rc
e:

J.
S
a
lm

o
n

For TV, the gradient will be zero for most of its coordinates.

This is due to the corners of the `1 ball.
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Total-Variation – One-dimensional case

Gradient sparsity

• Sparsity of the gradient ⇔ piece wise constant solutions

• Non-smooth (non-differentiable) ⇒ can’t use gradient descent. /

Large noise reduction with edge preservation

but, convex non-smooth optimization problem.

A solution: proximal splitting methods (in a few classes),

kind of implicit Euler schemes.
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Total-Variation – One-dimensional case (denoising)

20 40 60 80 100 120 140 160 180
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Evolution with the regularization parameter τ

• Too small: noise overfitting / staircasing,

• Too large: loss of contrast, loss of objects.
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Total-Variation – One-dimensional case (denoising)
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• Large noise: staircasing + loss of contrast.

• Small noise: noise reduction + edge preservation
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Total-Variation – One-dimensional case (denoising)
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Total-Variation – One-dimensional case (denoising)
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Total-Variation – One-dimensional case (denoising)
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Total-Variation – One-dimensional case (denoising)
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Total-Variation – One-dimensional case (denoising)
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Set of non-zero gradients (jumps) is sparse
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Total-Variation – Two-dimensional case

Two-dimensional case

F (x) =
1

2

∫
(Hx− y)2 + τ ||∇x||2 ds

2d Total-Variation

• Its discretization leads to

F (x) =
1

2
||Hx− y||22 +

τ

2

∑
k

||(∇x)k||2

=
1

2
||Hx− y||22 +

τ

2
||∇x||2,1

• `p,q norm of a matrix:

||A||p,q =

∑
k

(∑
l

|Akl|p
)q/p1/q
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Total-Variation – Results

(a) Blurry image y

TV regularization for deconvolution of motion blur

(b) Tiny τ (c) Small τ (d) Medium τ (e) High τ (f) Huge τ 86



Total-Variation – Results

(a) Blurry image y
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Total-Variation – Results

(b) Tiny τ
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Total-Variation – Results

(c) Small τ
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Total-Variation – Results

(d) Relatively small τ
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Total-Variation – Results

(e) Medium τ
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Total-Variation – Results

(f) Large τ
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Total-Variation – Results

(g) Even larger τ
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Total-Variation – Results

(h) Too larger τ
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Total-Variation – Results

(i) Huge τ
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Total-Variation – Results

TV regularization for denoising
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(a) Noise σ = 10 (b) σ = 20 (c) σ = 40 (d) σ = 60
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Total-Variation – Results

TV regularization for denoising
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Total-Variation – Two-dimensional case

Variant: Anisotropic TV

F (x) =
1

2

∫
(Hx− y)2 + τ ||∇x||1 ds

Anisotropic Total-Variation

• Its discretization leads to

F (x) =
1

2
||Hx− y||22 +

τ

2

∑
k

||(∇x)k||1

=
1

2
||Hx− y||22 +

τ

2
||∇x||1,1

• Anisotropic behavior:

• Penalizes more the gardient in diagonal directions,
• Favor horizontal and vertical structures,
• By opposition the `2,1 version is called Isotropic TV.
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Total-Variation – Two-dimensional case

(a) Sparsity induced by ||Ax||1,1 (b) Group sparsity induced by ||Ax||2,1
⇒ many zero entries ⇒ many zero rows

Anisotropic TV: components of the gradient of each pixel are independent.

Isotropic TV: the two components of the gradient are grouped together.
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Total-Variation – Two-dimensional case

(a) Independent (b) Blocks of gradients (c) Gradients and colors

We can also group the colors to avoid color aberrations.
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Total-Variation – Two-dimensional case

(a) Noisy image (b) Anisotropic TV (c) Anisotropic TV + Color
91



Total-Variation – Two-dimensional case

(a) Noisy image (b) Isotropic TV (c) Isotropic TV + Color
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Total-Variation – Remaining issues

• What to choose for the regularization τ?
• Loss of textures (high frequency objects)

−→ images are not piece-wise constant,
• Non-adapted for non-Gaussian noises (e.g., impulse noise).

(a) Gaussian noise (b) TV result (c) Impulse noise (d) TV result
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Variational methods – Further reading

For further reading

• Variational methods for image segmentation:

• Mumford-Shah functional (1989),
• Active contours / Snakes (Kass et al, 1988),
• Chan-Vese functional (2001).

• Link with Gibbs priors and Markov Random Fields (MRF):

• Geman & Geman model (1984),
• Graph cuts (Boykov, Veksler, Zabih, 2001), (Ishikawa, 2003),

−→ Applications in Computer-Vision.

• For more evolved regularization terms:

• Fields of Experts (Roth & Black, 2008).
• Total-Generalized Variation (Bredies, Kunisch, Pock, 2010).

• Link with Machine learning / Sparse regression:

• LASSO (Tibshirani, 1996) / Fused LASSO / Group LASSO.
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Questions?

Next class: Bayesian methods

Sources, images courtesy and acknowledgment

• L. Condat

• A. Horodniceanu

• I. Kokkinos

• G. Rosman

• A. Roussos

• J. Salmon

• Wikipedia
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