ECE 285
Image and video restoration

Chapter IV — Variational methods

Charles Deledalle
June 9, 2019

’ b P.M

Heat equation

Heat diffusion — Motivation

® How can we remove noise from an image?
® \What image can best explain this noisy observation?
® Takes inspiration from our physical world.
Best explanation is the one with maximal entropy.

® Heat, in an isolated system, evolves such that
the total entropy increases over time.

Heat diffusion

timet=1)
- . -
". L % 15
s %
e = = !
L . 05
= .r [] -
-l-‘ '. e 0
- 5 00
!-. . 05
s ® g 8. e 4
L

=
.2
(2]
=
e
5=
T
-
©
o}
I

timet=1

Heat diffusion

timet=1 time t = 11

2 2
-
". * % 15 . . " e
. = .y . 1 s o -
- . . 05 . o5
- .r] - ™
0 - 0
..l- '.‘ e g s - ‘. -
'o-. s® L 05 ‘, - 05
se ® o 9,° % 1 o 1
L
- ® - 15 15
2 -2

Heat diffusion

timet=1 o timet=16 o
-
«® o* %° 1.5 15
* .
='o . 1 1
. - 05 s
= .r [] -
-..ﬂ "‘ ve, 0 o, " 0
'o. .O L 05 o os
LT ,® % 1)
L
- ® - 15 15
2 2

Heat diffusion

time t =1) time t = 21)
- . -
L)
ﬁ'. L b 15
e LI . 1 1
9 . 05
= . - . - 0.5
-“ % ‘e - 0 0
- 5 00
;.' [] 0.5 05
se ® o 9,° % 1 1
-
- * . o 15

Heat diffusion

timet=1) time t = 26 ,
.
«® o* L 15 15
‘.
e LI . 1 1
9 . 05 0E
= .r [] -
e ". e 0 0
'o. .O L 05 os
LT ,® % 1)
L
»
- * g 15

Heat diffusion

time t =1) time t = 31)
- . -
L)
ﬁ'. L b 15
e LI . 1 1
9 . 05
- . ° - 05
-“ % v e - 0 0
- 5 00
;.' [] 0.5 05
se ® o 9,° % 1 1
-
- * . o 15

Heat diffusion

time t = 1) time t = 36 ,
.
«® o* L 15 15
‘.
e LI . 1 1
9 . 05 0E
= .r [] -
™ ". e ° 0
'o. .O L 05 os
LT ,® % 1)
L
»
- ° g 15

Heat diffusion

timet=1 o timet=41 .
- . -
.
ﬁ'. L 5 15
e LI . 1 1
9 . 05
= . - . - 0.5
-“ % ‘e g 0 0
- 5 00
;.' [] 0.5 05
se ® o 9,° % 1 1
L
- *) e 15

Heat diffusion

timet=1) time t = 46 ,
.
«® o* L 15 15
‘.
e LI . 1 1
9 . 05 0E
= .r [] -
e ". e 0 0
'o. .O L 05 os
LT ,® % 1)
L
»
- * g 15

Heat diffusion

timet=1 o time t = 46 o
-
|. " (] 1.5 15
* .
e LI . 1 1
L - 05 05
= .r [] -
..l‘ ‘.‘ v e, 0 0
'.o .. .0 05 0.5
- ae ® ..' b 1 p §
L
»
- ® s ¥ 15

Heat diffusion acts as a denoiser

® Spatial fluctuations of temperatures vanish with time (maximum entropy),
® Think of pixel values as temperature,

® Can heat diffusion help us to reduce noise?

Heat equation — Definition

Heat equation

The heat equation, a Partial Differential Equation (PDE), given by

%(s,t) = aAx(s,t) orin short % =aAz and z(s,0) =y(s)
+ some boundary conditions and where
® 5= (s1,52) € [0,1]% space location
® ¢t >0: time location
® z(s,t) €R: temperature at position s and time ¢
® a>0: thermal conductivity constant
° A: Laplacian operator
o? o
~ 082 + 952 9s2

Heat equation — Implementation

How to solve the heat equation?

2 solutions:

@ Heatequation — Discrete equation — Numerical scheme

@ Heat equation —— Continuous solution ~— Discretization

Heat equation — Implementation

How to solve the heat equation?

2 solutions:

@ Heatequation — Discrete equation — Numerical scheme

@ Heat equation —— Continuous solution ~— Discretization

Heat equation — Discretization

Discretization of the working space

® Periodical boundary conditions
z(0, s2,t) = z(1,s2,t) and x(s1,0,t) = z(s1,1,t).
® Map the discrete grid to the continuous coordinates (s1, s2,t)

(517 52, t) = (1551 a.j§52) k(;t)
Tmax

where (i, 5) € [0,n1] x [0, ma], k € [0,m], &, = ni s @ —

e

(0,0,0) (0,1,0) (0,0,0)

—_—

Discretization
\ (n1,0,0)
(1,0,0) (1,1,0)

1 O :
\ Space >
(s1,80,1) € [0,1]2 x R* (i,4, k) € [0,n1] x [0,n2] x [0,m]

Heat equation — Discretization

Then, replace function = by its discrete version:
k . .
Ti,5 = 35(15s17j5sz7k5t)

® ;: index for pixels with first coordinate s1 = ids,
® j: index for pixels with second coordinate sz = jds,

® L: is an index for time t = ko,

Heat equation — Finite differences

Recall: we want to discretize

ox

E(s,t) = aAzx(s,t) and x(s,0) =y(s)

Finite differences

® Replace first order derivative by forward finite difference in time

ox .) ¥
op ({051,305, k6e) 2 =2

Heat equation — Finite differences

Recall: we want to discretize

ox
E(s,t) = aAzx(s,t) and x(s,0) =y(s)

Finite differences

® Replace first order derivative by forward finite difference in time

o, . 1_
S8y, 360z, i8e) e L2

® Replace second order derivative by central finite difference in space

k k k k k

)) Tiq;+ T T Tl — AT

Az(ibsy, j0sy, kbr) ~ i—1,j it1,j 2%} 4] %]
05105,

Heat equation — Finite differences

Recall: we want to discretize

%(s,t) = aAzx(s,t) and x(s,0) =y(s)
Finite differences
® Rewrite everything in matrix/vector form

ox

1
o7 oK) & E(xkﬂ —) and Axz(,- kb))~ 5o Az*
where A in the right-hand side is the discrete Laplacian.
® We get
1
(S—t(askJrl —zF) = ﬁAmk and z° =y

Heat equation — Discrete Laplacian

First line

Second line

=il

Last line

A=

T2,ny

because of periodical boundary conditions.

Tny,1

Tny 2

Tny,ng

10

Heat equation — Explicit Euler scheme

Forward discretized scheme — Explicit Euler scheme

The heat equation % =aAz and z(s,0) =y(s)

1, % .
7(xk+1 _xk) _ _«

= Az 0=
3 5uons z° and z =y

rewrites as

which leads to the iterative scheme, that repeats for £k = 0 to m

0.
" = gk —l—vAxk and 2°=1y where ~= Qo
05, 0so

11

Heat equation — Explicit Euler scheme

Forward discretized scheme — Explicit Euler scheme

The heat equation % =aAz and z(s,0) =y(s)

1, % .
7(xk+1 _xk) _ _«

rewrites as _
Ot 051055

Az® and 2’ =y

which leads to the iterative scheme, that repeats for £k = 0 to m

0.
" = gk —l—vAxk and 2°=1y where ~= Qo
05, 0so
Convergence: |xfj — (905, , J0sy, kot)| ﬁ 0, forall (7,4, k)
51—
6S; —0

5:—0

11

Heat equation — Explicit Euler scheme

Forward discretized scheme — Explicit Euler scheme

The heat equation % =aAz and z(s,0) =y(s)

1, % .
7(xk+1 _xk) _ _«

rewrites as _
Ot 051055

Az® and 2’ =y

which leads to the iterative scheme, that repeats for £k = 0 to m

)
" = gk —l—vAxk and 2°=1y where ~= Qo
05,055
Convergence: |xfj — (905, , J0sy, kot)| ﬁ 0, forall (7,4, k)
51—
6S; —0
5:—0

0s, and Js, are fixed (by the size of the image grid).

O influences the number of iterations k used to reach ¢t = kd;.

11

Heat equation — Explicit Euler scheme

Stability

® The discretization scheme is stable, if there exists C' > 0 such that

for all (iajv k)? |x?,j| < C|yi,j

® Stability prevents the iterates from diverging.

® |If moreover numerical errors do not accumulate, 2* converges with k.

12

Heat equation — Explicit Euler scheme

Stability

® The discretization scheme is stable, if there exists C' > 0 such that

for all (iaj7 k’)v |xi€,]| < C|yi,j

® Stability prevents the iterates from diverging.

® |If moreover numerical errors do not accumulate, z* converges with k.

Courant-Friedrichs-Lewy (CFL) conditions

) 1
The sequence xy, is stable if: v = 5a(; < % where d = 2 for images
s51Uso

In particular we get m > 2daTmaxnine

12

Heat equation — Explicit Euler scheme

Geometric progression

The explicit Euler scheme can be rewritten as
" = 2F 4 AL = 1, +9A)Z", (0 =ning)

it is a geometric progression, hence: z* = (Id,, + vA)*y

13

Heat equation — Explicit Euler scheme

Geometric progression

The explicit Euler scheme can be rewritten as
" = 2F 4 AL = 1, +9A)Z", (0 =ning)
it is a geometric progression, hence: z* = (Id,, + vA)*y

Diagonalization

0 1 O
® A performs a periodical convolution with kernel: | 1 —4 1
0 1 0

e Diagonal in the discrete Fourier domain: A = F~'AF, with A diagonal

o e B

) Re[F(A)] (c) Im[F(A)]
13

Heat equation — Explicit Euler scheme

Geometric progression + Diagonalization
® The explicit Euler scheme becomes

a* = (Id, + vF'AF)*y
= (F'F+~F 'AF)"y
= (F'(1d +yA)F)*y
=F '(Id+~yA)F x F'(Id+yA)F x ... x F'(Id +yA)F y

k times
=F ' (Id++A) x ... x (Id+~A) Fy
k times
= F ' (Id+~A)* Fy
—

diagonal matrix

® The explicit Euler solution is a convolution,

® Solution in O(nlogn) whatever k. ©

14

Heat equation — Explicit Euler scheme

Load image (assumed to be square)

x = plt.imread('assets/cat.png')

nl, n2 = x.shape

sig = 20/255

y = x + sig * np.random.randn(nl, n2)

Create Laplacian kernel in Fourier

nu = (im.kernel('laplaciani'),
im.kernel('laplacian2'))

L=

Define problem setting (T = m * dt)

T = le-4

alpha = 1

rho = .99

ds2 =1/ (n1 * n2)

dt = rho * ds2 / (4 * alpha)
gamma = alpha * dt / ds2

m = np.round(T / dt)

Compute explicit Euler solution
K_ee = (1 + gamma * L)**m

x_ee = im.convolvefft(y, K_ee)

im.kernel2fft(nu, nl, n2, separable='sum')

— Results
CFL condition: v = O;—‘;t <%
52 !
) (S
= 0t < 1o
62
=6 =p— with p<l1
4o

(b) y (observation)

(c) T=10"*%, p=0.99 (d) T=10"*%, p=1.30

15

Heat equation — Implicit Euler scheme

Backward discretized scheme — Implicit Euler scheme
If instead we choose a backward difference in time

1, pi k o k+1 0
— — = A and =
5 (z z") 56 x nd z° =y

this leads to the iterative scheme
zFt = (Id, — '\/A)fla:k and z° =y.

This sequence is stable whatever v, but requires solving a linear system. ®

16

Heat equation — Implicit Euler scheme

Geometric progression and diagonalization
® Geometric progression: z* = (Id,, — yA) ¥y

® Again, since A = F~*AF is diagonal in the Fourier domain
#* = F7(Id, — yA) * Fy.

® The implicit Euler solution is again a convolution.

® Can be computed in O(nlogn) whatever k. ®

17

Heat equation — Implicit Euler scheme

Compute explicit Euler solution # Compute wmplicit Euler solution
K_ee = (1 + gamma * L)**k K_ie = 1 / (1 - gamma * L)*xk
x_ee = im.convolvefft(y, K_ee) x_ie = im.convolvefft(y, K_ie)

18

Heat equation — Implicit Euler scheme

Compute explicit Euler solution # Compute wmplicit Euler solution
K_ee = (1 + gamma * L)**k K_ie = 1 / (1 - gamma * L)*xk
x_ee = im.convolvefft(y, K_ee) x_ie = im.convolvefft(y, K_ie)

Explicit Euler

(a) (unknown) (b) y (observation) (d) T=10"%, p=1.30

Implicit Euler

(e) T=10"%, p=0.99 (f) T=10"%, p=1.30
18

Heat equation — Implicit Euler scheme

Compute explicit Euler solution # Compute wmplicit Euler solution
K_ee = (1 + gamma * L)**k K_ie = 1 / (1 - gamma * L)*xk
x_ee = im.convolvefft(y, K_ee) x_ie = im.convolvefft(y, K_ie)

5
3
[im|
+
S
o
x
; L
a) x (unknown y (observation c) T=10"", p=0.99 T=10""7, p=1.30
k b b 4 d 4
o
Q: How both schemes compare i
to the continuous solution s
when p < 17 =
£

(e) T=10"%, p=0.99 (f) T=10"%, p=1.30
18

Heat equation — Implementation

How to solve the heat equation?

2 solutions:

@ Heatequation — Discrete equation — Numerical scheme

@ Heat equation —— Continuous solution ~— Discretization

19

Heat equation — Continuous solution

Theorem

® Consider the continuous heat equation defined as

%(s,t) = aAx(s,t) and x(s,0) = y(s)

where s € R? (no restrictions to [0, 1], without boundary conditions).

® The exact solution is given by the d-dimensional Gaussian convolution

1 B n:uf%
\/47ro<tde o

(d = 2 for images).

{I}(S,t) = (y * g?at)(s) — /]Rd y(S — u)

® This is called the of the heat equation.

20

Heat equation — Continuous solution

Proof in the 1d case.

e In the 1d case the Heat equation reads as

o 0?
£ =alz ¥ aa—; and z(s,0) = y(s)

e Taking the spatial Fourier transform (with respect to s) in both sides gives

(930} _ {62w

F. {a ?} and Fs[z](u,0) = Fs[y](w)

21

Heat equation — Continuous solution

Proof in the 1d case.

e In the 1d case the Heat equation reads as

) 0?
870; = @l 2 aa—sf and z(s,0) = y(s)

e Taking the spatial Fourier transform (with respect to s) in both sides gives

oz 2%z
= {a} — oF, {ﬁ} and Fule](u,0) = Fuly)(w)
OFs[x] = —4n?ula - Fula] d";{,,(f) s (27rzu)”f(u))

ot

e This is a first order differential equation, z’(t) = az(t), whose solution is

21

Heat equation — Continuous solution

Proof in the 1d case.

e In the 1d case the Heat equation reads as

o 0?
£ =alz ¥ aa—sz and z(s,0) = y(s)

e Taking the spatial Fourier transform (with respect to s) in both sides gives

ox 0%z
7 |Z]—on |23] Al = Abw
a];;t[x] = —4r?u’a - Fqlz] dd{(” — (2miu)" f(u))

e This is a first order differential equation, z’(t) = az(t), whose solution is

Falal(u, t) = Faly](u) - el 47 0wt

e Products in Fourier domain corresponds to convolutions in the spatial domain,
. . d
which concludes the proof since F[G. 2] = /2172 Gy /4522

21

Heat equation — Continuous solution

Proof in the 1d case.

e In the 1d case the Heat equation reads as

o 0?
£ =alz ¥ aa—sz and z(s,0) = y(s)

e Taking the spatial Fourier transform (with respect to s) in both sides gives

ox 0%z
7 |Z]—on |23] Al = Abw
a];;t[x] = —4r?u’a - Fqlz] dd{(” — (2miu)" f(u))

e This is a first order differential equation, z’(t) = az(t), whose solution is

Falal(u, t) = Faly](u) - el 47 0wt

e Products in Fourier domain corresponds to convolutions in the spatial domain,
. . d
which concludes the proof since F[G. 2] = /2172 Gy /4522

2
e~ dat = Gout (s)

e :

21

Heat equation — Discretization of the solution

Continuous solution for d = 2

=
z(s1,82,1) 47rat jf $1 —u, 82 —v)e dat dudv = (y * Gaat) (51, 52)

Discretization

Z

e w2492
k N : . —utr
k| = (i6, 38a, k1) = [wti6e — w58 — vy e dudv
oo

Arakéy

2 F S22 +0%) Change of vatiabl
S . . 707 M
= pr— JI y(ids — uds, jos — vds)e a5k dude (,, Hag"sgz ‘;n;'a;'aﬁesgsv)
w2402 5
= 47r'yk jf 0s, (j —v)ds)e 4k dudv (Recall: v = Cz—%’)
w2402
=~ 47Wk7 Z Zyl,u =@ (Midpoint Riemann sum)
UELVEL

discrete convolution

(y * Gayk)ij

22

Heat equation — Discretization of the solution — Python demo

Compute explicit Euler solution
K_ee = (1 + gamma * L)**k

x_ee = im.convolvefft(y, K_ee)

Compute tmplicit Euler solution
K_ie = 1 / (1 - gamma * L)*xk
x_ie = im.convolvefft(y, K_ie)

Compute continuous solution

u, v = im.fftgrid(nl, n2)

K_cs = np.exp(-(ux*2 + v**2) / (4*gammaxk)) / (4*np.pi*gammaxk)
K_cs = nf.fft2(K_cs, axes=(0, 1))

x_cs = im.convolvefft(y, K_cs)

23

tion — Comparing the results

10 s

ar

(a) y (observation)

T=10"2

T=10"2

(b) Explicit Euler (c) Implicit Euler (d) Continuous

24

(a) y (observation)

T=10"2

T=10"2

(b) Explicit Euler (c) Implicit Euler

(d) Continuous

The three schemes provide similar solutions in O(nlogn).

24

Heat equation — Comparing the convolution kernels

—— Explcit Evler
plict Euler

T=10"3

T=10"2

100 50 [50 100

(a) Explicit Euler (b) Implicit Euler (c) Continuous (d) 1D slice

25

Heat equation — Comparing the convolution kernels

—— Explcit Evler
plict Euler

T=10"3

T=10"2

100 50 [50 100

(a) Explicit Euler (b) Implicit Euler (c) Continuous (d) 1D slice

25

Heat equation — Summary

Summary
® Solutions of the heat equations reduce fluctuations/details of the image,
® The continuous solution is a Gaussian convolution (LTI filter),
® Discretizations lead to near Gaussian convolutions,
® The width of the convolution kernel increases with time ¢,

® For t — oo, the solution is the constant mean image.

26

Scale space

Scale space

Definition (Scale space)

® A family of images z(s1, s2,t), where

® t is the scale-space parameter

® x(s1,82,0) = y(s1,s2) is the original image

® increasing t corresponds to coarser resolutions
® and satisfying (scale-space conditions)

® causality: coarse details are “caused” by fine details
® new details should not arise in coarse scale images

Gaussian blurring is a local averaging operation.

It does not respect natural boundaries

27

Scale space

Linear scale space
® Solutions of the heat equation define a linear scale space,
® Each scale is a linear transform/convolution of the previous one.

® Recall that Gaussians have a multi-scale property: G.2 * G 2 = Gy 2.

28

Scale space

Linear scale space
® Solutions of the heat equation define a linear scale space,
® Each scale is a linear transform/convolution of the previous one.

® Recall that Gaussians have a multi-scale property: G.2 * G 2 = Gy 2.

L Mﬂw

® Define an edge as a local extremum of the first derivative [Witkin, 1983]

first derivative peaks

larger scale 7

@ Edge location is not preserved across the scale space,
® Two edges may merge with increasing size,
® An edge may not split into two with increasing size.

28

Scale space

® Nonlinear filters (e.g., median filters) can be used to generate a
scale-space,
® But, they usually violate the causality condition.

29

Scale space

® Nonlinear filters (e.g., median filters) can be used to generate a

scale-space,
® But, they usually violate the causality condition.

Non-linear scale space

® |mmediate localization: fixed edge locations

® Piece-wise smoothing: diffuse between boundaries

At all scales the image will consist of smooth regions separated by edges.

How to build such a scale-space?

Diffused

Gradient.
magnitude

original

29

Anisotropic diffusion

Towards non-linear diffusion

T =alAzx = z(s,t) =y * Goar

Image-dependent conductivity
82 82) '8
A=gotam=(& &) (%)=vV=dvy
85% + as% dsq Dsa o) Vv i

® Rewrite the heat equation as

Ox .
Frie div(aVz)

® Basic ideas:

® make « evolve with space/time in order to preserve edges,
set & = 0 around edges, and a > 0 inside regions,
encourage intra-region smoothing,

and discourage inter-region smoothing.

30

Anisotropic diffusion — Perona-Malik model

Anisotropic diffusion [Perona and Malik, 1990]

9z _ div(g(|Vz|3) V) with z(s1,s2,0) = y(s1, s2)
ot ——

«

where g : RT — [0, 1] is decreasing and satisfies

g(0)=1 and lim g(u) =0.

U—r 00
® |nside regions with small gradient: fast isotropic diffusion,
® Around edges with large gradients: small diffusion,

® |n fact isotropic, sometimes referred to as inhomogeneous diffusion.

(a) Heat equation / linear diffusion (b) Inhomogeneous diffusion 3

Anisotropic diffusion — Perona-Malik model

Common choices (for > 0):

B+u
T T
. e —
9(u) = exp (,%)
—_—) =1
.
'\
b\
v\ s
7‘\ RN 7
W \e=20
AY ~ S
L \ \\ N‘\ 4
AY
A\ N\ ~~~~.-
3 =10 Se~ao
L ey ~~‘~-_ B ‘--_[7'_:_20____
~ -~ - e
T S 8=10
—05 e N BEGET T -.
0 L L i I]
0 1 2 3 4 5 6 7 8 9 10
u=|Ve[3

32

Anisotropic diffusion — Variants

Regularized Perona-Malik model [Catté, Lions, Morel, Coll, 1992]
® (lassical Perona-Malik solution may be ill-posed:
The PDE may have of solutions,
= In practice: small perturbations in y lead to strong deviations.
® |dea: smooth the conductivity field at a small cost of localization
oz

5 = divg(IV(Go * 2)I3)Ve)

where G2 is a small Gaussian kernel of width o > 0.

33

Anisotropic diffusion — Resolution schemes

General diffusion model

ox

i A(z)z
® Heat equation: A(z) = A=divV
with ® Perona-Malik: A(z) = divg(|Vz|3)V

® Reg. Perona-Malik: A(z) = div g(|V(G,*x)|3)V

34

Anisotropic diffusion — Resolution schemes

Resolution schemes: discretization in time

©® Explicit: P = (Id + vA(zF))z” (direct)

@ Semi-implicit: 2" = (Id — yA(z")) " 'a* (linear system to invert)

© Fully-implicit: 21 = (Id — yA(z* 1)) 12k (nonlinear)
Because A depends on z*, these are not geometric progressions.

® Need to be run iteratively,

® Same CFL conditions v < ﬁ
® For explicit scheme:
= at least O(n?) for k to reach time m.

35

Anisotropic diffusion — Explicit scheme — Python example

Example (Explicit scheme for R-AD)

2 = o 1y div(g([V(Go * 2°)[2) V)
1

ith :R—-R d —
wi g — an ’y<2d

lambda u: beta / (beta + u)
nu = im.kernel('gaussian', tau=sigma, s1=2, s2=2)

(0]
[}

Ezplicit scheme for regularized anisotropic diffusion
& =y
for k in range(m):

x_conv = im.convolve(x, nu)

alpha = g(im.norm2(im.grad(x_conv)))

X = x + gamma * im.div(alpha * im.grad(x))

36

(c) = (heat) (d) 230 (heat) (e) z3°0 (heat)

(i) =*°° (R-AD)

37

37

Anisotropic diffusion — Semi-implicit scheme

Example (Implicit scheme)

g = (Id — WA(:ck))flxk and converges for any 7 > 0

Naive idea

® At each iteration k, build the matrix M = Id — yA(z")

® |nvert it with the function inv of Python.

M is a n X n matrix,

If your image is n = 1024 x 1024 (8Mb), this will require
sizeof (double) X n x n = 8- 20 =8Tb

38

Anisotropic diffusion — Semi-implicit scheme

Best case scenario, you have a few Gb of RAM:

Python stops and says “Out of memory”

Not too bad scenario, you have more than 8Tb of RAM:

computation takes forever (in general O(n?)) —

Worst case scenario, you have less but close to 8Tb of RAM:

OS starts swapping and is non-responsive —>

39

Anisotropic diffusion — Semi-implicit scheme

Take home message

® When we write on paper y = Mz (with 2 and y images), in your code:

40

Anisotropic diffusion — Semi-implicit scheme

Take home message

® When we write on paper y = Mz (with 2 and y images), in your code:

40

Anisotropic diffusion — Semi-implicit scheme

Take home message

® When we write on paper y = Mz (with 2 and y images), in your code:

40

Anisotropic diffusion — Semi-implicit scheme

Take home message

® When we write on paper y = Mz (with 2 and y images), in your code:

40

Anisotropic diffusion — Semi-implicit scheme

Take home message

® When we write on paper y = Mz (with 2 and y images), in your code:

® \What is the alternative?

® Use knowledge on the structure of M to compute y = Mx quickly

® As for the FFT: Fz = ££t2(x) (you never had to build F')
11 ... 1
1 1 ... 1

sifM=1] , how do | compute Mz in O(n)?
11 ... 1

® If M is sparse (# of non-zero entries in O(n)), use sparse matrices.

40

Anisotropic diffusion — Semi-implicit scheme

But how do | compute z = M 'y if | do not build M?

® Solve the system
Mz =y

with a solver that only needs to know the operator z — M z.

Conjugate gradient

® |f M is square symmetric definite positive, solves the
system by iteratively evaluating z — M z at different locations z.

® Use im.cg. Example to solve 2z = y:

x = im.cg(lambda z: 2 * z, y)

41

Anisotropic diffusion — Semi-implicit scheme

Explicit: ="' = (Id + yA(z*))z* Implicit: "™ = (Id — yA(z*)) 2

Ezplicit vs Implict scheme for regularized anisotropic diffusion
X e =y
xi=y
for k in range(m):
Ezplicit (0 < gamma < 0.25)
x_e = rad_step(x_e, x_e, sigma, gamma, g)

Implicit (0 < gamma)
x_i = im.cg(lambda z: rad_step(x_i, z, sigma, -gamma, g), x_i)

One step r = (Id + gamma A(z)) z for the regularized AD
nu = im.kernel('gaussian', tau=sigma, s1=2, s2=2)
def rad_step(x, z, sigma, gamma, g):

x_conv = im.convolve(x, nu)

alpha = g(im.norm2(im.grad(x_conv)))

r = z + gamma * im.div(alpha * im.grad(z))

42

Anisotropic diffusion — Semi-implicit scheme — Results

Input
Explicit

Implicit

7’

My

/

(¢) k=1,v=0.24 x 100

(d) k =100,y = 0.24 (3% slower) (e) k=1,v=0.24x100 (2x faster)

(Note: M also block tri-diagonal = Thomas algorithm can be used and is even faster)

43

(
Behavior

a) xo (original) (b)) y=z0 +w (c) z (Perona-Malik) (d) y —x (method noise)

® |nside regions with small gradient magnitude: fast isotropic smoothing.
® Diffusion stops around strong image gradients (structure-preserving).

® Noise on edges is not reduced by Perona-Malik solutions.

Can we be really anisotropic?

44

Anisotropic diffusion — Truly anisotropic behavior?

(a) Homogeneous (b) Inhomogeneous (c) Anisotropic

Make neighborhoods truly anisotropic.

® Reminder: ellipses in 2d = encoded by a 2 X 2 sdp matrix
(rotation + re-scaling)

® Replace the conductivity by a matrix-valued function

gz _ div(7T'(z)Vz).
ot ——

matrix vector product

® T maps each pixel position of x to a 2 X 2 matrix.

T'(z) is called a tensor field,
® The function 1" should control the direction of the flow.

45

Anisotropic diffusion — Truly anisotropic behavior [Weickert, 1999]

i

ik

O‘/ ‘.
. ‘;/ . . . ?

[
. .‘(.‘ . .
. . . / f / l. . Q.
. / . E
VH g

46

Anisotropic diffusion — Truly anisotropic behavior [Weickert, 1999]

.\h\\

e % % N
=

.7
)=

Extract gradients
in a local neighborhood

Deduce the 2 main axes
and the variability on ea
(eigendecomposition of the covariance matrix)

axis

Define the tensor from
these two main axes and
determine their lengths as
a decreasing function g(u)
of the respective variabilities

46

Anisotropic diffusion — Truly anisotropic behavior [Weickert, 1999]

'r J L] L] . L] "' . L] .
“/ ‘. L] L] L] . L] L] . L] .
L] ‘;/ L] L] L] ? . L] L] . L] .
L] .‘K. . L] ® 4 L] .
L] . L] / *J .. . Q.
L] L] L] L] /. / L] E L] L] L] L]
[
9% _ div(T(z)Va)
ot ——

where T(z) = h[G,*((VGoxz)(VGoxz)™)]

local covariance matrix

with 5 |B (M LB =E 90) L, | B!
AQ g()\2)

decreasing (matrix-valued) function of the eigenvalues

and E:<€1 62> +— eigenvectors

47

Anisotropic diffusion — Comparison

(a) = (P-M., 1990) (b) y —x (method noise) (c) x (Weickert, 1999) (d) y — = (method noise)

Behavior
® Inside regions with small gradient magnitude: fast smoothing,
® Around objects: diffusion aligns to anisotropic structures,

® Noise on edges reduced compared to inhomogeneous isotropic diffusion.

48

Anisotropic diffusion — lllustrations

Figure 1 — (left) input y. (right) truly anisotropic diffusion

Source: A. Roussos

49

Figure 2 — (left) input y. (middle) inhomogeneous diffusion. (right) truly anisotropic.

Source: A. Roussos

50

Anisotropic diffusion — lllustrations

Figure 3 — (left) input y. (middle) inhomogeneous diffusion. (right) truly anisotropic.

Source: A. Roussos

51

Anisotropic diffusion — Remaining issues

® When to stop the diffusion?
® How to use that for deblurring / super-resolution / linear inverse problems?
® Non-adapted for non-Gaussian noises (e.g., impulse noise).

Gaussian noise

Impulse noise

(a) Input image (b) Perona-Malik (c) Conductivity

52

Variational methods

Variational methods

Definition
A variational problem is as an of the form
min {F(m) = / f(s,z, V) ds}
x Q
where
° O image support (ex: [0,1]?),
° x: Q00— R: that maps a position s to a value,
e Vz:Q— R%: gradient of x,
® 5= (s1,82) € space location,
® f(s,p,v): loss chosen for a given task,
o [that maps a function to a value.

(function of a function)

53]

Variational methods - Tikhonov functional

Example (Tikhonov functional)

® Consider the inverse problem y = H(x) + w, with H linear.

® The Tikhonov functional F'is, for 7 > 0, defined as

1
F@) = 5 [(H@)E) ~u(@)? + Va3 ds
or, in short, we write
— 5 [(@) —* +7 |Val} as
2 Jo——— ==
data fit smoothing

® Look for z such that its degraded version H(z) is close to y.
® But, discourage x to have large spatial variations.

® 7: regularization parameter (trade-off).

54

Variational methods - Tikhonov functional

Data fit (Hz —y)? Hx) V|13 Smoothness

(white = small) Apply V

Integrate
(gradient) '

[-ds
Integrate
J-ds

—_— T —————>

(black = large)

— ey

Pick the image x with smallest: Data-fit + Smoothness

55

Variational methods - Tikhonov functional

F(z) =+ / (H(z) -)2 +7 |Vl ds
2 @ d fi hi
ata fit smoothing

Example (Tikhonov functional)

® The image x is forced to be close to the noisy image y through H, but the
amplitudes of its gradient are penalized to avoid overfitting the noise.

® The parameter 7 > 0 controls the regularization.

® For 7 — 0, the problem becomes ill-posed/ill-conditioned,

noise remains and may be amplified.

® For 7 — 0o, « tends to be constant (depends on boundary conditions).

56

Variational methods - Tikhonov functional

(a) Low resolution y

Tikhonov regularization for x 16 super-resolution

(c) Small 7 (d) Good T

57

Variational methods

How to solve this variational problem?

2 solutions:

@ Functional — Discretization —> Numerical scheme

@ Functional — PDE — Discretization & Euler schemes

58

Variational methods

How to solve this variational problem?

2 solutions:

@ Functional — Discretization —> Numerical scheme

@ Functional — PDE — Discretization & Euler schemes

(we won't discuss it, cf., Euler-Lagrange equation)

58

Variational methods — Smooth optimization

Discretization of the functional

® n: number of pixels,

° L pixel index, corresponding to location sk,
® rcR™ discrete image,

* Vz: discrete image gradient,

® F:R" - R: function of a vector.

® (lassical optimization problem,
® Look for a vector x that cancels the gradient of F',

® |f no explicit solutions, use

59

Variational methods — Smooth optimization

Lipschitz gradient
® A differentiable function F' has L Lipschitz gradient, if

IVF(z1) — VF(x2)|2 < L|z1 — z2|2, for all z1, z2 .

= n =
= y=VF() = y=VF()
4 4
=4 74
| |
K &
L L
o o T o Ea xo
- —
Nl = 2l Nl = 2l

® The mapping x — V F(z) is necessarily continuous.

® |f F is twice differentiable
2
L=suwp |V2F(z)]s.
] SN——
Hessian matrix of F’
where for a matrix A, its £2-norm |A|2 is its maximal singular value.

60

Variational methods — Smooth optimization

Be careful:

e Vi € R"*? is a 2d discrete vector field,

corresponding to the discrete gradient of the image .

e (Vz)r € R? is a 2d vector: the discrete gradient of x at location sy.

e VF(x) € R" is the (continuous) gradient of F' at x.

e (VF(z))r € R: variation of F for an infinitessimal variation of the pixel value xy.

61

Variational methods — Smooth optimization

Gradient descent

® Let F be a real function, differentiable and lower bounded with a L
Lipschitz gradient. Then, whatever the initialization z°, if 0 < v < 2/L,
the sequence

"t = A VF ("),
converges to a x* (i.e., it cancels the gradient)

VF(z")=0.

® The parameter «y is called the step size.
® A too small step size v leads to slow convergence.

® For 0 < v < 2/L, the sequence F(z") decays with a rate in O(1/k).

62

Variational methods — Smooth optimization

z =z —yVF(z)
=
VF(z) =0

These two curves cross at z* such that VF(z*) =0

63

Variational methods — Smooth optimization

z =z —yVF(z)
=
VF(z)=0

Here v is small: slow convergence

63

Variational methods — Smooth optimization

z =z —yVF(z)
=
VF(z) =

~ a bit larger: faster convergence

63

Variational methods — Smooth optimization

z =z —yVF(z)
=
VF(z) =0

~v &~ 1/L even larger: around fastest convergence

63

Variational methods — Smooth optimization

z =z —yVF(z)
=
VF(z) =

7VF(z)

~ a bit too large: convergence slows down

63

Variational methods — Smooth optimization

$
7
)
1 1 T L L)
- 2N
z =z —yVF(z) 7‘>P(/)
=
VF(z)=0

7 too large: convergence too slow again

63

Variational methods — Smooth optimization

__z=z-7VF(z) 0
=
VF(@z)=0 G+

~ > 2/L: divergence

64

Variational methods — Smooth optimization

Gradient descent for convex function

® |f moreover F is
FAz1+ (1 — XNx2) < AF(21) + (1 — N F(22), Vai,z9,X € (0,1),
then, the gradient descent converges towards a
x* € argmin F(x).

® Note: All stationary points are global minimum (non necessarily unique).

non-convex

(global minima)

convex

65

Variational methods — Smooth optimization

One-dimension

vy T w5 T4

Small step size Good step size Large step size Too large step size
Fast convergence Slow convergence Divergence

Slow convergence

Two-dimensions

66

Variational methods — Smooth optimization

Example (Tikhonov functional (1/6))
® The functional F' is

F(z) = = / (H(z) —) +7 |Val2 ds .

data fit smoothing

® |ts discretization leads to

D ((Ha)k = yi)® + 5 D 1(Val3

k

F(x) =

— N

-
= §||HUC —yls + §HV$H§,2

® (5 5/Frobenius norm of a matrix:

lAIZ: =) Az =) Al =trA"A=(A, 4).
k l

k
® Scalar product between matrices: tr A*B = (A, B).

67

Variational methods — Smooth optimization

1 Y T .
F(@) = 51Hz -yl + Z|Val3,

Example (Tikhonov functional (2/6))

® This function is differentiable and convex, since
® If f convex, x — f(Ax + b) is convex,
® Norms are convex,
® Quadratic functions are convex,
® Compositions of convex non-decreasing functions (left) and convex
functions (right) are convex.
® Sums of convex functions are convex.

® \We can solve this problem using gradient descent.

68

Variational methods — Smooth optimization

1 T
F(z) = §||Hx —yl5+ §||V$

2
2,2

Example (Tikhonov functional (3/6))
® Note that |Vz|3 2 = (Vz, Vz) = (z, — div Vz) = — (2, Az), then

F(z) = 3 (1Hal + [yl - 2 (Hz,) - T (@, A2)

= 3 (@, H"Ha) + |yl = 2 (z, H'y))

T

5 (x, Az)

® The gradient is thus given by

VF(z) = %((H*H + H*H)z — 2H"y — 7(A + A™)z)

=H"(Hz —y) — TAz

Note: V (z, Ay) = Ay and V{z, Az) = (A+ A"z

69

Variational methods — Smooth optimization

Example (Tikhonov functional (4/6))

® The gradient descent reads as

"t = 2F — yVF ()
=k - ’y(H*(ka —y) — TAJ?k)

with v < 2 where L = |[H*H — 7A|s.
* Triangle inequality: L < [H |3 + 74d since |Als = 4d.

® For 7 — oo and z° = g, this converges to the explicit Euler scheme for the
Heat equation. The condition v < % is equivalent to the CFL condition.

This explains why at convergence the Heat equation provides constant
solutions (when using periodical boundary solutions).

70

Variational methods — Smooth optimization

Example (Tikhonov functional (5/6))
" = 2 — y(H* (Hz" — y) —7AZ")
—_——
retroaction
® The retroaction allows to remain close to the observation.

® Unlike the solution of the Heat equation,

this numerical scheme converges to a solution of interest.

® (lassical stopping criteria:

® fixed number m of iterations (k =1 to m),
* [F(z") = F(a")|/|F(a")| <e, or
o o —aF|/]z"] <.

71

Variational methods

Example (Tikhonov regularization (6/6))

® Explicit solution

VF(z)=H*(Hz —y) — 1Az =0
<~
= (H*"H—7A)"'H*y

® Can be directly solved by conjugate gradient.
® Tikhonov regularization is linear (non-adaptive).

® If H is a blur, this is a convolution by a sharpening kernel (LTI filter).

72

Variational methods - Robust regularization

Data fit | V|3 Smoothness

Tikhonov regulazization

v G([Iv(3) Regularity

Robust regulazization

Use robust regularizers to pick the good candidate
73

Variational methods — Robust regularization

Example (Robust regularization (1/2))

F(z) =< / (Hz —) +7 G(|Va]3) ds
2 Jo~——— S ——7

data fit regularization

® After discretization, its gradient is given by
VF(z) = H*(Hz — y) — 7div(g(|Vz|3) V)

where g(u) = G'(u).

® The gradient descent becomes

" = 2F — y(H*(Hz" — y) —7 div(g(|V2"]|3) V") .
N———

retroaction

74

Variational methods — Robust regularization

(a) Low resolution y

Robust regularization for x 16 super-resolution

(b) Tiny 7 (c) Small 7 (d) Good T (e) High (f) Huge 7

75

Variational methods — Robust regularization

(a) Low resolution y

Tikhonov regularization for x 16 super-resolution

(b) Tiny 7 (c) Small 7 (d) Good T (e) High (f) Huge 7

75

Variational methods — Robust regularization

Example (Robust regularization (2/2))
Gu)=u = gu)=1 (Heat)

G(u) =plog(B+u) = g(u)=

G(u) =B (1 —exp (—%)) = g(u) = exp <—%> (AD)

76

Variational methods — Robust regularization

= = = G(u) = Blog(B+u)
1 G =8(1-ew(-4)) H
—_—CG) =u
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
-10 8 -6 4 -2 0 2 4 6 8 10
Vz (one-dimensional)
® Tikhonov (blue) is convex:
= ®
® huge penalization for large gradients: does not allow for edges,
= . ®
® The other two are non-convex:
= ®
® small penalization for large gradients: allows for edges (robust),

= . ®

7

Total-Variation

Total-Variation

Total-Variation (TV) or ROF model [Rudin, Osher, Fatemi, 1992]
1
F(z) = / E(Hx —y)? +7|Vz|s ds TV(z) = / V|2 ds
Q Q

5 T T
41 il

@3r 1

s

T2k J
1
0—5 -4 -3 -2 -1 0 1 2 3 4 5

Vz (one-dimensional)

® Tightest convex penalty. e Convex, robust and

78

Total-Variation — One-dimensional case

F(x) = %/(wayf + 7|Vz| ds

1d Total-Variation

® |ts discretization leads to

1 T
F@) = 51Hz —yl§ + 5 3" |(Val
k

1 T
= J1Hz — gl + 2| Val:

1/p
lvl» = (Z |Ukp>
k

® /, norm of a vector:

79

Total-Variation — One-dimensional case

i previous
Wl = A Jilh=r N non-conves
Vs, ‘ i\ regularization

l6llz =7

Data fitting

Solution

Regularization

Source: J. Salmon

Tikhonov Total-variation

For TV, the gradient will be zero for most of its coordinates.

This is due to the corners of the ¢ ball.
80

Total-Variation — One-dimensional case

non-differentiable
at zero

Gradient sparsity
® Sparsity of the gradient < piece wise constant solutions

® Non-smooth (non-differentiable) = can’t use gradient descent. @

Large noise reduction with edge preservation
but, convex non-smooth optimization problem.

A solution: proximal splitting methods (in a few classes),
kind of implicit Euler schemes.

81

Total-Variation — One-dimensional case (denoising)

250

200

150
)
=
Té
3 100
50
@
50
0r Noisy signal y
Ground truth
TV &
50 1 1 I I I I I I I
20 40 60 80 100 120 140 160 180

Spatial position sy

Evolution with the regularization parameter 7

® Too small: noise overfitting / staircasing,

® Too large: loss of contrast, loss of objects.

82

Total-Variation — One-dimensional case (denoising)

250

200 A . Wa_ ¥
[rey

150 -

Signal value
o
o
;

50 -
0r Noisy signal y
Ground truth
TV &
50 1 1 I I I I I I I
20 40 60 80 100 120 140 160 180

Spatial position sy

Evolution with the regularization parameter 7

® Too small: noise overfitting / staircasing,

® Too large: loss of contrast, loss of objects.

82

Total-Variation — One-dimensional case (denoising)

250

200 -

I3
=]
T

Signal value
=)
o
T

3]
=]
T

0+ Noisy signal y
Ground truth z
TV &
50 1 1 I I I I I I I
20 40 60 80 100 120 140 160 180
Spatial position sy

Evolution with the regularization parameter 7

® Too small: noise overfitting / staircasing,
® Too large: loss of contrast, loss of objects.

82

Total-Variation — One-dimensional case (denoising)

250

200 - t]

I3
=]
T

I

Signal value
=)
o
T
1

3]
=]
T

I

L

0+ Noisy signal y LT b
Ground truth z
TV &
50 1 1 I I I I I I I
20 40 60 80 100 120 140 160 180
Spatial position sy

Evolution with the regularization parameter 7

® Too small: noise overfitting / staircasing,

® Too large: loss of contrast, loss of objects.

82

Total-Variation — One-dimensional case (denoising)

250

200 - t]

I3
=]
T

I

Signal value
=)
o
T
—
1

3]
=]
T

I

0+ Noisy signal y b
Ground truth z
TV &
50 1 1 I I I I I I I
20 40 60 80 100 120 140 160 180
Spatial position sy

Evolution with the regularization parameter 7

® Too small: noise overfitting / staircasing,

® Too large: loss of contrast, loss of objects.

82

Total-Variation — One-dimensional case (denoising)

250

200 - ¥

o
o
T
I

o
[S]
T

I

Signal value

a
t=}
T

I

0r Noisy signal y q
Ground truth
TV &
50 1 1 I I I I I I I
20 40 60 80 100 120 140 160 180
Spatial position sy

Evolution with the regularization parameter 7

® Too small: noise overfitting / staircasing,

® Too large: loss of contrast, loss of objects.

82

Total-Variation — One-dimensional case (denoising)

250

200 - t]

I3
=]
T

Signal value
=)
o
T

50 -
0+ Noisy signal y
Ground truth z
TV &
50 1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180

Spatial position sy

Evolution with the regularization parameter 7

® Too small: noise overfitting / staircasing,

® Too large: loss of contrast, loss of objects.

82

Total-Variation — One-dimensional case (denoising)

250

200 -

o
o
T

o
[S]
T

Signal value

a
t=}
T

0r Noisy signal y
Ground truth
TV &

-50 1 1 1 1 1 I I I

20 40 60 80 100 120 140 160
Spatial position sj
Evolution with the regularization parameter 7

® Too small: noise overfitting / staircasing,

® Too large: loss of contrast, loss of objects.

180

82

Total-Variation — One-dimensional case (denoising)

250
|
200 | s | 3
150
E =\
g
3 100 |- \
&
& L]
50 -
0r Noisy signal y
Ground truth z
TV &
-50 1 1 1 1 1 Il Il Il Il
20 40 60 80 100 120 140 160 180

Spatial position sy

Evolution with the noise level o
® |arge noise: staircasing + loss of contrast.
® Small noise: noise reduction + edge preservation

83

Total-Variation — One-dimensional case (denoising)

250
|
200 - [riom | 4
150
E =\
g
3 100 |- \
3
@ L
50 -
0r Noisy signal y
Ground truth
TV &
50 1 1 I I I I I I I
20 40 60 80 100 120 140 160 180

Spatial position sy

Evolution with the noise level o
® |arge noise: staircasing + loss of contrast.
® Small noise: noise reduction + edge preservation

83

Total-Variation — One-dimensional case (denoising)

250

200

o
o

o
[S]

Signal value

a
t=}

Noisy signal y

Ground truth

TV &

50 1 1 I I I I I I I
20 40 60 80 100 120 140 160 180

Spatial position sy

Evolution with the noise level o
® |arge noise: staircasing + loss of contrast.
® Small noise: noise reduction + edge preservation

83

Total-Variation — One-dimensional case (denoising)

250

200 - T

I3
=]
T

I

Signal value
=)
o
T
1

50 - q
0+ Noisy signal y b
Ground truth z
TV &
50 1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180

Spatial position sy

Evolution with the noise level o
® |arge noise: staircasing + loss of contrast.
® Small noise: noise reduction + edge preservation

83

Total-Variation — One-dimensional case (denoising)

250

200 - 3

a
t=}
T

o
S
T

Signal value

o
=}
T

0r Noisy signal y
Ground truth z
TV &
50 1 1 I I I I I I I
20 40 60 80 100 120 140 160 180
Spatial position sy

Evolution with the noise level o
® |arge noise: staircasing + loss of contrast.
® Small noise: noise reduction + edge preservation

84

Total-Variation — One-dimensional case (denoising)

250

200

o a
S t=}

Signal value

o
=}

Noisy signal y
Ground truth z

TV &

L L L L L L L L L
20 40 60 80 100 120 140 160 180
Spatial position sy
Set of non-zero gradients (jumps) is sparse
Il Il Il Il Il Il Il Il Il
20 40 60 80 100 120 140 160 180

84

Total-Variation — Two-dimensional case

1)
Fl@)= /(Hl- — y)* + 7| Vel ds

2d Total-Variation

® |ts discretization leads to
1 2 T
F(@) = SI1He =yl + 2 3" [(Va)ule
k
= 2|Haz -yl + Z|Vale,
2 2 ’

® /p.q norm of a matrix:

1/q

q/p
Al = [T (z A)
k

85

Total-Variation — Results

(a) Blurry image y

TV regularization for deconvolution of motion blur

(b) Tiny 7 (c) Small 7 (d) Medium 7 (e) High 7

Total-Variation — Results

(a) Blurry image y

Total-Variation — Results

Total-Variation — Results

(c) Small 7

Total-Variation — Results

(d) Relatively small 7

Total-Variation — Results

(e) Medium 7

Total-Variation — Results

Total-Variation — Results

(g) Even larger 7

Total-Variation — Results

(h) Too larger 7

Total-Variation — Results

Total-Variation — Results

TV regularization for denoising

)
Q0
@

E
>

e
o

=

Total-Variation (~50s)

Total-Variation — Results

TV regularization for denoising

)
Q0
@
E
>
e
o
=

BNL-means (~~30s)

Total-Variation — Two-dimensional case

Variant:
1 2
F(‘L):i/(H.L*y) + 7 ds

Anisotropic Total-Variation

® |ts discretization leads to

1 T
F(e) = s|Ho —yl3 + 2 > I(Va)ls
k

1 2 T
=_—|Hzx — =

SV Hz — y3 + T Valy,
® Anisotropic behavior:

® Penalizes more the gardient in diagonal directions,
® Favor horizontal and vertical structures,
® By opposition the ¢5 1 version is called

88

Total-Variation — Two-dimensional case

o ol |

(a) Sparsity induced by |Axz|1,1 (b) Group sparsity induced by |Az|2 1

= many zero entries => many zero rows
Anisotropic TV: components of the gradient of each pixel are independent.

Isotropic TV: the two components of the gradient are grouped together.

89

Total-Variation — Two-dimensional case

L

(a) Independent (b) Blocks of gradients (c) Gradients and colors

We can also group the colors to avoid color aberrations.

90

Total-Variation — Two-dimensional case

(a) Noisy image (b) Anisotropic TV (c) Anisotropic TV + Color
91

Total-Variation — Two-dimensional case

(a) Noisy image (b) Isotropic TV (c) Isotropic TV + Color
91

Total-Variation — Remaining issues

® \What to choose for the regularization 77
® Loss of textures (high frequency objects)
— images are not piece-wise constant,
® Non-adapted for non-Gaussian noises (e.g., impulse noise).

—

(a) Gaussian noise (b) TV result (c) Impulse noise (d) TV result

92

Variational methods — Further reading

For further reading

Mumford-Shah functional (1989),
Active contours / Snakes (Kass et al, 1988),
Chan-Vese functional (2001).

Geman & Geman model (1984),
Graph cuts (Boykov, Veksler, Zabih, 2001), (Ishikawa, 2003),
— Applications in Computer-Vision.

Fields of Experts (Roth & Black, 2008).
Total-Generalized Variation (Bredies, Kunisch, Pock, 2010).

LASSO (Tibshirani, 1996) / Fused LASSO / Group LASSO.

93

Questions?

Next class: Bayesian methods

Sources,
L. Condat
A. Horodniceanu
I. Kokkinos

G. Rosman

, images courtesy and acknowledgment

A. Roussos
J. Salmon

Wikipedia

	Heat equation
	Scale space
	Anisotropic diffusion
	Variational methods
	Total-Variation

