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Motivations

(a) y = x+ w (b) z = F y (c)
λ2i

λ2
i
+σ2

(d) ẑi=
λ2i

λ2
i
+σ2

zi (e) x̂ = F−1ẑ

Wiener filter (LMMSE in the Fourier domain)

• Assume Fourier coefficients to be decorrelated (white),

• Modulate frequencies based on the mean power spectral density λ2
i .

Limits

• Linear: no adaptation to the content ⇒

{
Unable to preserve edges,

Blurry solutions.
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Motivations

Facts and consequences

• Assume Fourier coefficients to be decorrelated (white)

• Removing Gaussian noise ⇒ need to be adaptive ⇒ Non linear

• Assuming Gaussian noise + Gaussian prior ⇒ Linear

Deductive reasoning

Fourier coefficients of clean images are not Gaussian distributed

How are Fourier coefficients distributed?
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Motivations – Distribution of Fourier coefficients

How are Fourier coefficients distributed?

1. Perform whitening with DFT

Var[x] = L = EΛE∗ with E = 1√
n
F

diag(Λ) = (λ2
1, . . . , λ

2
n) = n−1MPSD
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Motivations – Distribution of Fourier coefficients

How are Fourier coefficients distributed?

2. Look at the histogram

• The histogram of η has a symmetric bell shape around 0.

• It has a peak at 0 (a large number of Fourier coefficients are zero).

• It has large/heavy tails (many coefficients are “outliers”/abnormal).

(a) x (b) Whitening η of x (c) Histogram of η
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Motivations – Distribution of Fourier coefficients

How are Fourier coefficients distributed?

3. Look for the distribution that best fits (in log scale)

• Gaussian: bell shape
√

, peak ×, tail ×
• Laplacian: bell shape ×, peak

√
, tail
√

• Student: bell shape
√

, peak ×, tail
√

(heavier)

• Others: alpha stables and generalized Gaussian distributions

(a) Whitening η of x (b) Histogram of η (c) Log-histogram of η
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Motivations – Distribution of Fourier coefficients

Model expression (zero mean, variance = 1)

• Gaussian: bell shape
√

, peak ×, tail ×

p(ηi) =
1√
2π

exp

(
−η

2
i

2

)
• Laplacian: bell shape ×, peak

√
, tail
√

p(ηi) =
1√
2

exp
(
−
√

2|ηi|
)

• Student: bell shape
√

, peak ×, tail
√

(heavier)

p(ηi) =
1

Z

(
1

(2r − 2) + η2
i

)r+1/2

(Z normalization constant, r > 1 controls the tails)

How do they look in multiple-dimensions?
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Motivations – Distribution of Fourier coefficients

• Gaussian prior

{ • images are concentrated in an elliptical cluster,

• outliers are rare (images outside the cluster).

• Peaky & heavy tailed priors: shape between a diamond and a star.


• union of subspaces: most images lie in one of the branches of the star,

• sparsity: most of their coefficients ηi are zeros,

• robustness: outlier coefficients are frequent.
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Shrinkage functions



Shrinkage functions

Consider the following Gaussian denoising problem

• Let y ∈ Rn and x ∈ Rp be two random vectors such that

y |x ∼ N (x, σ2Idn)

E[x] = 0 and Var[x] = L = EΛE∗

• Let η = Λ−1/2E∗x (whitening / decorrelation of x)

Goal: estimate x from y

assuming a non-Gaussian prior pη for η.

(such as Laplacian or Student)
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Shrinkage functions

Bayesian shrinkage functions

• Assume ηi are also independent and identically distributed (iid).

• Then, the MMSE and MAP estimators both read as

x̂? = Eẑ︸︷︷︸
Come back

where ẑi = s(zi; λi, σ)︸ ︷︷ ︸
shrinkage

and z = E∗y︸︷︷︸
Change of basis

• The function zi 7→ s(zi; λi, σ) is called shrinkage function.

• Unlike the LMMSE, s will depend on the prior distribution of ηi.

• As for the LMMSE, the solution can be computed in the eigenspace.

• We say that the estimator is separable in the eigenspace (ex: Fourier).
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Shrinkage functions

Remark

independence⇒ uncorrelation

¬uncorrelation⇒ ¬independence

correlation⇒ dependence

⇒

Whitening is a necessarily step

for independence but not a

sufficient one.

(Except in the Gaussian case)

How are the shrinkage functions defined for the MMSE and MAP?
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Shrinkage functions

• Recall that the MMSE is the posterior mean

x̂? =

∫
Rn
xp(x|y) dx =

∫
Rn xp(y|x)p(x) dx∫
Rn p(y|x)p(x) dx

MMSE Shrinkage functions

• Under the previous assumptions

x̂? = Eẑ︸︷︷︸
Come back

where ẑi = s(zi; λi, σ)︸ ︷︷ ︸
shrinkage

and z = E∗y︸︷︷︸
Change of basis

with s(z; λ, σ) =

∫
R z̃ exp

(
− (z−z̃)2

2σ2

)
pη
(
z̃
λ

)
dz̃∫

R exp
(
− (z−z̃)2

2σ2

)
pη
(
z̃
λ

)
dz̃

where pη is the prior distribution on the entries of η.

• Separability: n dimensional optimization −→ n × 1d integrations.
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Shrinkage functions

• Recall that the MAP is the optimization problem

x̂? ∈ argmax
x∈Rn

p(x|y) = argmin
x∈Rn

[− log p(y|x)− log p(x)]

MAP Shrinkage functions

• Under the previous assumptions

x̂? = Eẑ︸︷︷︸
Come back

where ẑi = s(zi; λi, σ)︸ ︷︷ ︸
shrinkage

and z = E∗y︸︷︷︸
Change of basis

with s(z; λ, σ) = argmin
z̃∈R

[
(z − z̃)2

2σ2
− log pη

(
z̃

λ

)]
where pη is the prior distribution on the entries of η.

• Separability: n dimensional integration −→ n × 1d optimisations.
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Shrinkage functions

Example (Gaussian noise + Gaussian prior)

• MMSE Shrinkage

s(z; λ, σ) =

∫
R z̃ exp

(
− (z−z̃)2

2σ2 − z̃2

2λ2

)
dz̃∫

R exp
(
− (z−z̃)2

2σ2 − z̃2

2λ2

)
dz̃

=
λ2

λ2 + σ2
z

• MAP Shrinkage

s(z; λ, σ) = argmin
z̃∈R

[
(z − z̃)2

2σ2
+

z̃2

2λ2

]
=

λ2

λ2 + σ2
z

• Gaussian prior: MAP = MMSE = Linear shrinkage.

• We retrieve the LMMSE as expected.
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Shrinkage functions

Gaussian noise + Gaussian prior

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

SNR = λ/σ = 4 λ/σ = 1 λ/σ = 1/4
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Posterior mean – Shrinkage functions – Examples

Example (Gaussian noise + Laplacian prior)

• MMSE Shrinkage

s(z; λ, σ) =

∫
z̃ exp

(
− (z−z̃)2

2σ2 −
√

2|z̃|
λ

)
dz̃∫

exp
(
− (z−z̃)2

2σ2 −
√

2|z̃|
λ

)
dz̃

= z −
γ
(

erf
(
z−γ√

2σ

)
− exp

(
2γz
σ2

)
erfc

(
γ+z√

2σ

)
+ 1
)

erf
(
z−γ√

2σ

)
+ exp

(
2γz
σ2

)
erfc

(
γ+z√

2σ

)
+ 1

, γ =

√
2σ2

λ

• MAP Shrinkage (soft-thresholding)

s(z; λ, σ) = argmin
z̃∈R

[
(z − z̃)2

2σ2
+

√
2|z̃|
λ

]
=


0 if |z| < γ

z − γ if z > γ

z + γ if z < −γ︸ ︷︷ ︸
Soft-T(z,γ)

Non-gaussian prior: MAP 6= MMSE → Non-linear shrinkage.
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Shrinkage functions

Gaussian noise + Laplacian prior
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SNR = λ/σ = 4 λ/σ = 1 λ/σ = 1/4
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Posterior mean – Shrinkage functions – Examples

Example (Gaussian noise + Student prior)

• MMSE Shrinkage

No simple expression, requires 1d numerical integration

• MAP Shrinkage

No simple expression, requires 1d numerical optimization

For efficiency, the 1d functions

can be evaluated offline and stored in a look-up-table.
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Shrinkage functions

Gaussian noise + Student prior
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Posterior mean – Shrinkage functions – Examples
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SNR = λ/σ = 4 λ/σ = 1/2 λ/σ = 1/2

• Coefficients are shrunk towards zero • Signs are preserved

• Non-Gaussian priors leads to non-linear filtering:

• sparsity: small coefficients are shrunk (likely due to noise)
• robustness: large coefficients are preserved (likely encoding signal)

• Larger SNR = λ
σ
⇒ shrinkage becomes close to identity.
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Posterior mean – Shrinkage functions – Examples

Interpretation
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Sparsity: zero for small values.

Robustness: remain close to the identity for large values.

Transition: bias/variance tradeoff.

Can we design our own shrinkage according to what we want?
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Shrinkage functions

Shrinkage functions (a.k.a, thresholding functions)

• Pick a shrinkage function s satisfying

• Shrink: |s(z)| 6 |z| (non-expansive)

• Preserve sign: z · s(z) > 0

• Kill low SNR: lim
λ
σ
→0

s(z; λ, σ) = 0

• Keep high SNR: lim
λ
σ
→∞

s(z; λ, σ) = z

• Increasing: z1 6 z2 ⇔ s(z1) 6 s(z2)

• Beyond Bayesian: No need to relate s to a prior distribution pη.
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Shrinkage functions

A few examples (among many others)
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Hard-thresholding MCP SCAD

• Though not necessarily related to a prior distribution,

• Often related to a penalized least square problem, ex:

Hard-T(z) = argmin
z̃∈R

[
(z − z̃)2 + τ21{z̃ 6=0}

]
=

{
0 if |z| < τ

z otherwise

• Hard-thresholding: similar behavior to Student’s shrinkage.
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Shrinkage functions

Link with penalized least square (1/2)

• D = L1/2 = EΛ1/2 is an orthogonal dictionary of n atoms/words

D = (d1, d2, . . . , dn) with ||di|| = λi and 〈di, dj〉 = 0 (for i 6= j)

• Goal: Look for the n coefficients ηi, such that x̂ close to y

x̂ = Dη =

n∑
i=1

ηidi = “linear comb. of the orthogonal atoms di of D”

• Choosing ηi =
〈

di
||di||2

, y
〉

, i.e., η = Λ−1/2E∗y, is optimal:

x̂ = y

but, it also reconstructs the noise component.

• Idea: penalize the coeffs to prevent from reconstructing the noise.
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Shrinkage functions

Link with penalized least square (2/2)

• Penalization on the coefficients controls shrinkage and sparsity:

• 1

2
||y −Dη||22 +

τ2

2
||η||22 ⇒ ẑi =

λ2
i

λ2
i + τ2

zi

• 1

2
||y −Dη||22 + τ ||η||1 ⇒ ẑi = Soft-T (zi, γi) with γi =

τ

λi

• 1

2
||y −Dη||22 +

τ2

2
||η||0 ⇒ ẑi = Hard-T (zi, γi) with γi =

τ

λi

`0 pseudo-norm: ||η||0 = lim
p→0

(
n∑
i=1

ηpi

)1/p

= “# of non-zero coefficients”

Sparsity: ||η||0 small compared to n
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Posterior mean – Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x (b) y = x+ w

(c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

sig = 20

I y = x + sig * np.random.randn(x.shape)

n1, n2 = y.shape[:2]

n = n1 * n2

lbd = np.sqrt(prior_mpsd(n1, n2) / n)

z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)

zhat = shrink(z, lbd, sig)

xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)

z = F y/
√
n

ẑi = s(zi; λi, σ)

x̂ =
√
nF−1ẑ
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Posterior mean – Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x (b) λ

(c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

sig = 20

y = x + sig * np.random.randn(x.shape)

n1, n2 = y.shape[:2]

n = n1 * n2

I lbd = np.sqrt(prior_mpsd(n1, n2) / n)

z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)

zhat = shrink(z, lbd, sig)

xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)

z = F y/
√
n

ẑi = s(zi; λi, σ)

x̂ =
√
nF−1ẑ
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Posterior mean – Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x (b) z

(c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

sig = 20

y = x + sig * np.random.randn(x.shape)

n1, n2 = y.shape[:2]

n = n1 * n2

lbd = np.sqrt(prior_mpsd(n1, n2) / n)

I z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)

zhat = shrink(z, lbd, sig)

xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)

z = F y/
√
n

ẑi = s(zi; λi, σ)

x̂ =
√
nF−1ẑ
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Posterior mean – Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x (b) z (c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

sig = 20

y = x + sig * np.random.randn(x.shape)

n1, n2 = y.shape[:2]

n = n1 * n2

lbd = np.sqrt(prior_mpsd(n1, n2) / n)

z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)

I zhat = shrink(z, lbd, sig)

xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)

z = F y/
√
n

ẑi = s(zi; λi, σ)

x̂ =
√
nF−1ẑ

26



Posterior mean – Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x (b) y = x+ w (c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

sig = 20

y = x + sig * np.random.randn(x.shape)

n1, n2 = y.shape[:2]

n = n1 * n2

lbd = np.sqrt(prior_mpsd(n1, n2) / n)

z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)

zhat = shrink(z, lbd, sig)

I xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)

z = F y/
√
n

ẑi = s(zi; λi, σ)

x̂ =
√
nF−1ẑ
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Shrinkage functions – Fourier domain – Results

(a) x (b) y (σ = 20) (c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

Bias ←−−−−−−−−−−−−−−−→ Variance
27



Shrinkage functions – Fourier domain – Results

(a) x (b) y (σ = 40) (c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

Bias ←−−−−−−−−−−−−−−−→ Variance
27



Shrinkage functions – Fourier domain – Results

(a) x (b) y (σ = 60) (c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

Bias ←−−−−−−−−−−−−−−−→ Variance
27



Shrinkage functions – Fourier domain – Results

(a) x (b) y (σ = 120) (c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

Bias ←−−−−−−−−−−−−−−−→ Variance
27



Posterior mean – Limits of shrinkage in the Fourier domain

Limits of shrinkage in the discrete Fourier domain

(a) x (b) y convolution kernels︷ ︸︸ ︷

(c) Linear
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

• Linear shrinkage (Wiener)

⇒ Non-adaptive,

• Non-linear shrinkage

⇒ Adaptive convolution,

• Adapts to the frequency content,

• but not to the spatial content.

ẑi = s(zi; τ, σ) =
s(zi; τ, σ)

zi
× zi︸ ︷︷ ︸

element-wise product

⇔ x̂ = ν(y) ∗ y︸ ︷︷ ︸
spatial average

adapted to the spectrum of y.
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Motivations

Consequences

• Modulating Fourier coefficients ⇒ Non spatially adaptive

• Assuming Fourier coefficients to be white+sparse ⇒ Shrinkage in Fourier

Deductive reasoning

Need another representation for sparsifying clean images

E 6= 1√
n


×n


︸ ︷︷ ︸

DFT: F

←−−−− Columns were the Fourier atoms

What transform can make signal white and sparse and

captures both spatial and spectral contents?
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Wavelet transforms



Introduction to wavelets – Haar (1d case) [Alfréd Haar (1909)]

Id =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 and F =


1 1 1 1

1 e−2πi1/4 e−2πi2/4 e−2πi3/4

1 e−2πi2/4 e−2πi4/4 e−2πi6/4

1 e−2πi3/4 e−2πi6/4 e−2πi9/4


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Introduction to wavelets – Haar (1d case) [Alfréd Haar (1909)]

H1st =
1√
2


1 1 0 0

0 0 1 1

1 −1 0 0

0 0 1 −1

 and H2nd =


1/2 1 1 1 1
1/2 1 1 −1 −1

1/
√

2 1 −1 0 0
1/
√

2 0 0 1 −1


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Introduction to wavelets – Haar (2d case)

(a) H1st (4× 4 image) (b) x (c) H1stx

2d Haar representation

4 sub-bands


• Coarse sub-band

• Vertical detailed sub-band

• Horizontal detailed sub-band

• Diagonal detailed sub-band
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Introduction to wavelets – Haar (2d case)

(a) H1st (4× 4 image) (b) x (c) H2ndx

Multi-scale 2d Haar representation

• Repeat recursively J times

• Dyadic decomposition

• Multi-scale representation

• Related to scale spaces

32



Introduction to wavelets – Haar (2d case)

(a) H1st (4× 4 image) (b) x (c) H3rdx

Multi-scale 2d Haar representation

• Repeat recursively J times

• Dyadic decomposition

• Multi-scale representation

• Related to scale spaces

33



Introduction to wavelets – Haar (2d case)

(a) H1st (4× 4 image) (b) x (c) H4thx

Multi-scale 2d Haar representation

• Repeat recursively J times

• Dyadic decomposition

• Multi-scale representation

• Related to scale spaces
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Introduction to wavelets – Haar transform - Filter bank

34



Introduction to wavelets – Haar transform - Separability

Properties of the 2d Haar transform

• Separable: 1d Haar transforms in horizontal and next vertical direction

• First: perform a low pass and high pass filtering

• Next: perform decimation by a factor of 2

Can we choose other low and high pass filters

to get a better transform?
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Discrete wavelets

Discrete wavelet transform (DWT) (1/3) (1d and n even)

• Let h ∈ Rn (with periodical boundary conditions) satisfying

n−1∑
i=0

hi = 0

n−1∑
i=0

h2
i = 1

and
n−1∑
i=0

hihi+2k = 0 for all integer k 6= 0

Example (Haar as a particular case)

h =
1√
2

(0 . . . 0 − 1 + 1 0 . . . 0)
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Discrete wavelets

Discrete wavelet transform (DWT) (2/3) (1d and n even)

• Define the high and low pass filters H : Rn → Rn and G : Rn → Rn as

(Hx)k = (h ∗ x)k =

n−1∑
i=0

hixk−i

(Gx)k = (g ∗ x)k =

n−1∑
i=0

gixk−i where gi = (−1)ihn−1−i

• Note: necessarily
n−1∑
i=0

gi =
√

2

Example (Haar as a particular case)

h =
1√
2

(0 . . . 0 − 1 + 1 0 . . . 0)

g =
1√
2

(0 . . . 0 + 1 + 1 0 . . . 0)
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Discrete wavelets

• Define the decimation by 2 of a matrix M ∈ Rn×n as

M↓2 = “M[::2, :]” ∈ Rn/2×n

i.e., the matrix obtained by removing every two rows.

• M↓2 x: apply M to x and next remove every two entries.

Discrete wavelet transform (DWT) (3/3) (1d and n even)

Let W =

(
G↓2
H ↓2

)
∈ Rn×n

Then


• x 7→Wx: orthonormal discrete wavelet transform,

• Columns of W : orthonormal discrete wavelet basis,

• z = Wx: wavelet coefficients of x.
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Multi-scale discrete wavelets

Multi-scale DWT (1d and n multiple of 2J) [Mallat, 1989]

Defined recursively as W J-th =

(
W (J-1)-th O

0 Id

)
W
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Multi-scale discrete wavelets

Implementation of 2D DWT (n1 and n2 multiple of 2J)

def dwt(x, J, h, g): # 2d and multi-scale

if J == 0:

return x

n1, n2 = x.shape[:2]

m1, m2 = (int(n1 / 2), int(n2 / 2))

z = dwt1d(x, h, g)

z = flip(dwt1d(flip(z), h, g))

z[:m1, :m2] = dwt(z[:m1, :m2], J - 1, h, g)

return z

def dwt1d(x, h, g): # 1d and 1scale

coarse = convolve(x, g)

detail = convolve(x, h)

z = np.concatenate((coarse[::2, :], detail[::2, :]), axis=0)

return z

Use separability
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Multi-scale discrete wavelets

Multi-scale Inverse DWT (1d and n multiple of 2J)

Defined recursively as (W J-th)−1 = W−1

(
(W (J-1)-th)−1 O

0 Id

)

where W−1 = W ∗ =
(
G∗ ↑2 H∗ ↑2

)
∈ Rn×n

and M↑2: remove every two columns.

M↑2 x : insert 0 every two entries in x and next apply M .
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Multi-scale discrete wavelets

Implementation of 2D IDWT (n1 and n2 multiple of 2J)

def idwt(z, J, h, g): # 2d and multi-scale

if J == 0:

return z

n1, n2 = z.shape[:2]

m1, m2 = (int(n1 / 2), int(n2 / 2))

x = z.copy()

x[:m1, :m2] = idwt(x[:m1, :m2], J - 1, h, g)

x = flip(idwt1d(flip(x), h, g))

x = idwt1d(x, h, g)

return x

def idwt1d(z, h, g): # 1d and 1scale

n1 = z.shape[0]

m1 = int(n1 / 2)

coarse, detail = np.zeros(z.shape), np.zeros(z.shape)

coarse[::2, :], detail[::2, :] = z[:m1, :], z[m1:, :]

x = convolve(coarse, g[::-1]) + convolve(detail, h[::-1])

return x

Use that its orthonormal then W−1 = W ∗
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Discrete wavelets – Limited support

Discrete wavelet with limited support

• Consider a high pass filter with finite support of size m = 2p (even).
For instance for m = 4

H =



h2 h3 0 . . . 0 h0 h1

h0 h1 h2 h3 0 . . . 0

0 h0 h1 h2 h3 0 . . .

. . .

0 . . . 0 h0 h1 h2 h3

h2 h3 0 . . . 0 h0 h1


• Then h defines a wavelet transform if it satisfies the three conditions∑

hi = 0 and
∑

h2
i = 1 and

∑
hihi+2k = 0 for k = 1 to p− 1

• This system has 2p unknowns and 1 + p independent equations.

• If p = 1, 2p = 1 + p, this implies that the solution is unique (Haar).

• Otherwise, one has p− 1 degrees of freedom.
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Discrete wavelets – Daubechies’ wavelets

Daubechies’ wavelets (1988)

• Daubechies suggests adding the p− 1 constraints

2p−1∑
i=0

iqhi = 0 for q = 1 to p− 1 (vanishing q-order moments)

• For p = 2, the (orthonormal) Daubechies’ wavelets are defined as
h2

0 + h2
1 + h2

2 + h2
3 = 1

h0 + h1 + h2 + h3 = 0

h0h2 + h1h3 = 0

h1 + 2h2 + 3h3 = 0

⇔ h = ± 1√
2


1+
√

3
4

3+
√

3
4

3−
√

3
4

1−
√

3
4


• The corresponding DWT is referred to as Daubechies-2 (or Db2).

As for the Fourier transform, there also exists a continuous version.
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Continuous wavelets

Continuous wavelet transform (CWT) (1d)

• Continuum of locations t ∈ R and scales a > 0,

• Continuous wavelet transform of x : R→ R

c(a, t)︸ ︷︷ ︸
wavelet coefficient

=

∫ +∞

−∞
ψ∗a,t

(
t′
)
x(t′) dt′ = 〈 x︸︷︷︸

signal

, ψa,t︸︷︷︸
wavelet

〉

where ∗ is the complex conjugate.

• ψa,t: daughter wavelets, translated and scaled versions of Ψ

ψa,t(t
′) =

1√
a

Ψ

(
t′ − t
a

)
• Ψ: the mother wavelets satisfying∫ +∞

−∞
Ψ(t) dt = 0 and

∫ +∞

−∞
|Ψ(t)|2 dt = 1 <∞

(zero-mean) (unit-norm / square-integrable)
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Continuous wavelets

Inverse CWT (1d)

• The inverse continuous wavelet transform is given by

x(t) =
1

CΨ

∫ +∞

−∞

∫ +∞

0

1

|a|2 c(a, t
′)ψa,t

(
t′
)

da dt′

with CΨ =

∫ +∞

0

|Ψ̂(u)|2

u
du where Ψ̂ is the Fourier transform of Ψ.

Relation between CWT/DWT (1d)

• The DWT can be seen as the discretization of the CWT

• Diadic discretization in scale: a = 1, 2, 4, . . . , 2J

• Uniform discretization in time at scale j with step 2j : t = 1:2j :n
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Continuous wavelets

Twin-scale relation (1d)

• The CWT is orthogonal (inverse = adjoint), if and only if Ψ satisfies

Ψ(t) =
√

2

m−1∑
i=0

hiΦ(2t− i) and Φ(t) =
√

2

m−1∑
i=0

giΦ(2t− i)

where h and g are high- and low-pass filters defining a DWT.

• Φ is called father wavelet or scaling function.

• Note: potentially m =∞.

Twin-scale relation: allows to define a CWT from DWT and vice-versa.

The CWT may not have a closed form (approximated by the cascade algorithm)
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Continuous and discrete wavelets
H

aa
r/

D
b

1
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0

0.5

1
Low pass filter

-1 0 1 2

-1
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0

0.5

1
High pass filter
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Popular wavelets are:
Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);

Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990);

Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.

Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets).

Two filters for the direct, and two others for the inverse.
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Continuous and discrete wavelets
D

b
2

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Father wavelet

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Mother wavelet

-1

-0.5

0

0.5

1
Low pass filter

-1 0 1 2 3 4

-1

-0.5

0

0.5

1
High pass filter

-1 0 1 2 3 4

Popular wavelets are:
Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);

Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990);

Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.

Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets).

Two filters for the direct, and two others for the inverse.

48



Continuous and discrete wavelets
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Continuous and discrete wavelets
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Continuous and discrete wavelets
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Continuous and discrete wavelets
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Continuous and discrete wavelets
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Two filters for the direct, and two others for the inverse.
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Wavelets and sparsity

Wavelets perform image compression

• Haar encodes constant signals with one coefficient,

• Db-p encodes (p-1)-order polynomials with p coefficients.

Consequences:

• Polynomial/Smooth signals are encoded with very few coefficients,

• Coarse coefficients encode the smooth underlying signal,

• Detailed coefficients encode non-smooth content of the signal,

• Typical signals are concentrated on few coefficients,

• The remaining coefficients capture only noise components.

⇒ Heavy tailed distribution with a peak at zero,

i.e., wavelets favor sparsity.
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Wavelets as a sparsifying transform

F
o

u
ri

er

(a) x (b) Fx (c) λ (d) (Fx)i/λi

W
av

el
et

s

(e) x (f) Wx (g) λ (h) (Wx)i/λi

Fourier (ui, vi freq. of component i)

• E∗ = F /
√
n

• λ2
i = n−1MPSD and ∞ if i = 0

• Arbitrary DC component

Wavelets (ji scale of component i)

• E∗ = W

• λi = α2ji−1 and ∞ if ji = J

• Arbitrary coarse component
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Distribution of wavelet coefficients

(a) x (b) ηi = (Wx)i/λi

(c) Histogram of η (d) Histogram of η
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Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y

(b) z (Haar)

sig = 20

I y = x + sig * nr.randn(*x.shape)

z = im.dwt(y, 3, h, g)

zhat = shrink(z, lbd, sig)

xhat = im.idwt(zhat, 3, h, g)

z = W y

ẑi = s(zi; λi, σ)

x̂ = W−1ẑ
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Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y (b) ẑ (Haar+LMMSE)

sig = 20

y = x + sig * nr.randn(*x.shape)

z = im.dwt(y, 3, h, g)

I zhat = shrink(z, lbd, sig)

xhat = im.idwt(zhat, 3, h, g)

z = W y

ẑi = s(zi; λi, σ)

x̂ = W−1ẑ

52



Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y (b) ẑ (Haar+LMMSE) (c) x̂

sig = 20

y = x + sig * nr.randn(*x.shape)

z = im.dwt(y, 3, h, g)

zhat = shrink(z, lbd, sig)

I xhat = im.idwt(zhat, 3, h, g)

z = W y

ẑi = s(zi; λi, σ)

x̂ = W−1ẑ
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Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y (b) ẑ (Daubechies+LMMSE) (c) x̂

sig = 20

y = x + sig * nr.randn(*x.shape)

z = im.dwt(y, 3, h, g)

zhat = shrink(z, lbd, sig)

I xhat = im.idwt(zhat, 3, h, g)

z = W y

ẑi = s(zi; λi, σ)

x̂ = W−1ẑ
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Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y (b) ẑ (Daubechies+Soft-T) (c) x̂

sig = 20

y = x + sig * nr.randn(*x.shape)

z = im.dwt(y, 3, h, g)

zhat = shrink(z, lbd, sig)

I xhat = im.idwt(zhat, 3, h, g)

z = W y

ẑi = s(zi; λi, σ)

x̂ = W−1ẑ
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Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y (b) ẑ (Daubechies+Hard-T) (c) x̂

sig = 20

y = x + sig * nr.randn(*x.shape)

z = im.dwt(y, 3, h, g)

zhat = shrink(z, lbd, sig)

I xhat = im.idwt(zhat, 3, h, g)

z = W y

ẑi = s(zi; λi, σ)

x̂ = W−1ẑ
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Shrinkage in the wavelet domain

(a) y (σ = 20) (b) Db2+LMMSE (c) Db2+Soft-T (d) Db2+Hard-T (e) Haar+Hard-T

For large noise: Blocky effects and Ringing artifacts
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Shrinkage in the wavelet domain

(a) y (σ = 40) (b) Db2+LMMSE (c) Db2+Soft-T (d) Db2+Hard-T (e) Haar+Hard-T

For large noise: Blocky effects and Ringing artifacts
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Shrinkage in the wavelet domain

(a) y (σ = 60) (b) Db2+LMMSE (c) Db2+Soft-T (d) Db2+Hard-T (e) Haar+Hard-T

For large noise: Blocky effects and Ringing artifacts
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Shrinkage in the wavelet domain

(a) y (σ = 120) (b) Db2+LMMSE (c) Db2+Soft-T (d) Db2+Hard-T (e) Haar+Hard-T

For large noise: Blocky effects and Ringing artifacts
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Undecimated wavelet transforms



Limits of the discrete wavelet transform

• While Fourier shrinkage is translation invariant:

ψ(yτ ) = ψ(y)τ where yτ (s) = y(s+ τ)

• Wavelet shrinkage is not translation invariant.

• This is due to the decimation step:

W =

(
G ↓2
H ↓2

)
∈ Rn×n where M ↓2 = “M[::2, :]”

• This explains the blocky artifacts that we observe.
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Undecimated discrete wavelet transform (UDWT)

Figure 1 – Haar DWT

• Haar transform groups pixels by clusters of 4.

• Blocks are treated independently to each other.

• When similar neighbor blocks are shrunk

differently, it becomes clearly visible in the image.

• This arises all the more as the noise level is large.

What if we do not decimate?

⇒ UDWT, aka, stationary or translation-invariant wavelet transform.
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Undecimated discrete wavelet transform (UDWT)

1-scale DWT

• For a 4× 4 image:

4× 4 coefficients.

• For n pixels: K = n coefficients.

1-scale UDWT

• For a 4× 4 image:

8× 8 coefficients.

• For n pixels: K = 4n coeffs.

What about multi-scale?
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Undecimated discrete wavelet transform (UDWT)

A trous algorithm (with holes) (Holschneider et al., 1989)

Instead of decimating the coefficients at each scale j, upsample the filters

h and g by injecting 2j − 1 zeros between each entries.
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Undecimated discrete wavelet transform (UDWT)

DWT: Mallat’s dyadic pyramidal multi-resolution scheme

UDWT: A trous algorithm – G:p: inject p zeros between each filter coeffs

Multi-scales: K = (1 + J(2d − 1))n coeffs (J : #scales, d = 2 for images)
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Undecimated discrete wavelet transform (UDWT)

Implementation of 2D UDWT (A trous algorithm)

def udwt(x, J, h, g):

if J == 0:

return x[:, :, np.newaxis]

tmph = flip(convolve(flip(x), h)) / 2

tmpg = flip(convolve(flip(x), g)) / 2

detail = np.stack((convolve(tmpg, h),

convolve(tmph, g),

convolve(tmph, h)), axis=2)

coarse = convolve(tmpg, g)

h2 = interleave0(h)

g2 = interleave0(g)

z = np.concatenate((udwt(coarse, J - 1, h2, g2), detail), axis=2)

return z

Linear complexity.

Can be easily modified to reduce memory usage.
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Undecimated discrete wavelet transform (UDWT)

(a) DWT (J=2) (b) UDWT Coarse Sc. (c) Detailed Scale #1 (d) Detailed Scale #2

(e) Detailed Scale #3 (f) Detailed Scale #4 (g) Detailed Scale #5 (h) Detailed Scale #6

What about its inverse transform?
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Undecimated discrete wavelet transform (UDWT)

DWT – Wavelet basis – and inverse DWT

• The DWT W ∈ Rn×n has n columns and n rows.

• The n columns/rows of W are orthonormal.

• The inverse DWT is W−1 = W ∗.

• One-to-one relationship between an image and its wavelet coefficients.

UDWT – Redundant wavelet dictionary

• The UDWT W̄ ∈ RK×n has K = (1 + J(2d − 1))n rows and n columns.

• The rows of W̄ cannot be linearly independent: not a basis.

• They are said to form a redundant/overcomplete wavelet dictionary.

• Since W̄ is non square, it is not invertible.

Note: redundant dictionaries necessarily favor sparsity.
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Undecimated discrete wavelet transform (UDWT)

Pseudo-inverse UDWT

• Nevertheless, the n columns are orthonormal, then: W̄ ∗ = W̄+

• It satisfies W̄+W̄ = Idn, but W̄W̄+ 6= IdK

• image
W̄−→ coefficients

W̄+

→ back to the original image,

• coefficients
W̄+

→ image
W̄→ not necessarily the same coefficients.

• Satisfies the Parseval equality〈
W̄x, W̄ y

〉
=
〈
x, W̄ ∗W̄ y

〉
=
〈
x, W̄+W̄ y

〉
= 〈x, y〉

• In the vocabulary of linear algebra: W̄ is called a tight-frame.

Consequence: an algorithm for W̄+ can be obtained.
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Undecimated discrete wavelet transform (UDWT)

Implementation of 2D Inverse UDWT

def iudwt(z, J, h, g):

if J == 0:

return z[:, :, 0]

h2 = interleave0(h)

g2 = interleave0(g)

coarse = iudwt(z[:, :, :-3], J - 1, h2, g2)

tmpg = convolve(coarse, g[::-1]) + \

convolve(z[:, :, -3], h[::-1])

tmph = convolve(z[:, :, -2], g[::-1]) + \

convolve(z[:, :, -1], h[::-1])

x = (flip(convolve(flip(tmpg), g[::-1])) +

flip(convolve(flip(tmph), h[::-1]))) / 2

return x

Linear complexity again.

Can also be easily modified to reduce memory usage.

Can we be more efficient?
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Multi-scale discrete wavelets

Filter bank

• The UDWT of x for subband k, x 7→ (Wx)k is

linear and translation invariant (LTI)

⇒ It’s a convolution.

• The UDWT is a filter bank:

a set of band-pass filters that separates

the input image into multiple components.

• Each filter can be represented by its frequential response.

• Direct and inverse transform: implementation in the Fourier domain.
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Undecimated discrete wavelet transform (UDWT)
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(a) Coarse 2 (b) Details 2 (c) Details 2 (d) Details 2 (e) Details 1 (f) Details 1 (g) Details 1

Haar with J = 2 levels of decomposition
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Undecimated discrete wavelet transform (UDWT)
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Haar: band pass with side lobes. Db8: closer to ideal band pass.
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Undecimated discrete wavelet transform (UDWT)

Db4 with J = 6 levels of decomposition

How to create such a filter bank?
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Undecimated discrete wavelet transform (UDWT)

UDWT: Creation of the filter bank (offline)

def udwt_create_fb(n1, n2, J, h, g, ndim=3):

if J == 0:

return np.ones((n1, n2, 1, *[1] * (ndim - 2)))

h2 = interleave0(h)

g2 = interleave0(g)

fbrec = udwt_create_fb(n1, n2, J - 1, h2, g2, ndim=ndim)

gf1 = nf.fft(fftpad(g, n1), axis=0)

hf1 = nf.fft(fftpad(h, n1), axis=0)

gf2 = nf.fft(fftpad(g, n2), axis=0)

hf2 = nf.fft(fftpad(h, n2), axis=0)

fb = np.zeros((n1, n2, 4), dtype=np.complex128)

fb[:, :, 0] = np.outer(gf1, gf2) / 2

fb[:, :, 1] = np.outer(gf1, hf2) / 2

fb[:, :, 2] = np.outer(hf1, gf2) / 2

fb[:, :, 3] = np.outer(hf1, hf2) / 2

fb = fb.reshape(n1, n2, 4, *[1] * (ndim - 2))

fb = np.concatenate((fb[:, :, 0:1] * fbrec, fb[:, :, -3:]),

axis=2)

return fb
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Undecimated discrete wavelet transform (UDWT)

UDWT: Direct transform using the filter bank (online)

def fb_apply(x, fb):

x = nf.fft2(x, axes=(0, 1))

z = fb * x[:, :, np.newaxis]

z = np.real(nf.ifft2(z, axes=(0, 1)))

return z

UDWT: Inverse transform using the filter bank (online)

def fb_adjoint(z, fb):

z = nf.fft2(z, axes=(0, 1))

x = (np.conj(fb) * z).sum(axis=2)

x = np.real(nf.ifft2(x, axes=(0, 1)))

return x

Much more efficient than previous implementation when J > 1
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Reconstruction with the UDWT

Shrinkage with UDWT

• Consider a denoising problem y = x+ w with noise variance σ2.

• Shrink the K > n coefficients independently.

x̂? = W̄+ẑ︸ ︷︷ ︸
Pseudo-inverse

where ẑi = s(zi; λi, σi)︸ ︷︷ ︸
shrinkage

and z = W̄ y︸︷︷︸
Redundant representation

Rule of thumb for soft-thresholding:

• For the orthonormal DWT W : increase λi as
√

2
d(ji−1)

.

• For the tight-frame UDWT W̄ : increase λi as: 2d(ji−1/2).

(ji scale for coefficient i, d = 2 for images).
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Reconstruction with the UDWT

(a) y (b) DWT(3)+Haar+HT (c) DWT(3)+Db2+HT

(d) UDWT(3)+Haar+HT

(e) UDWT(3)+Db2+HT

(f) UDWT(3)+Db8+HT
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Reconstruction with the UDWT

(a) y (b) DWT(3)+Haar+HT (c) DWT(3)+Db2+HT

(d) UDWT(3)+Haar+HT (e) UDWT(3)+Db2+HT (f) UDWT(3)+Db8+HT
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Reconstruction with the UDWT

(a) y (b) DWT(3)+Haar+HT (c) DWT(3)+Db2+HT

(d) UDWT(1)+Db2+HT (e) UDWT(3)+Db2+HT (f) UDWT(5)+Db2+HT
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Reconstruction with the UDWT

(a) y (b) DWT(3)+Haar+HT (c) DWT(3)+Db2+HT

(d) UDWT(3)+Db2+Linear (e) UDWT(3)+Db2+HT (f) UDWT(3)+Db2+ST
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Reconstruction with the UDWT

(a) y (σ = 20) (b) UDWT+Lin. (c) UDWT+HT (d) DWT+HT
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Reconstruction with the UDWT

(a) y (σ = 40) (b) UDWT+Lin. (c) UDWT+HT (d) DWT+HT
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Reconstruction with the UDWT

(a) y (σ = 60) (b) UDWT+Lin. (c) UDWT+HT (d) DWT+HT
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Reconstruction with the UDWT

(a) y (σ = 120) (b) UDWT+Lin. (c) UDWT+HT (d) DWT+HT
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Reconstruction with the UDWT

x̂? = W̄+ẑ︸ ︷︷ ︸
Pseudo-inverse

where ẑi = s(zi; λi, σi)︸ ︷︷ ︸
shrink K coefficients

and z = W̄ y︸︷︷︸
Redundant representation

Connection with Bayesian shrinkage?

• Since the rows of W̄ are linearly dependent,

the coefficients zi are necessarily correlated (non-white).

• Shrink the K > n coefficients independently,

even though they cannot be assumed independent.

• This estimator has no Bayesian interpretation,

it does not correspond to the MMSE or MAP.

How to use the UDWT in the Bayesian context?
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Reconstruction with the UDWT

Bayesian analysis model

Whitening model: Consider η = Λ−1/2Wx (η coeffs)

such that E[η] = 0n and Var[η] = Idn

Analysis: images can be transformed to white coeffs.

B Non-sense when rows of W are redundant.

Bayesian synthesis model

Generative model: Consider x = W̄+Λ1/2η (η code)

such that E[η] = 0K and Var[η] = IdK

Synthesis: images can be generated from a white code.

, Always well-founded.

74



Reconstruction with the UDWT

Forward model: y = x+ w

Maximum a Posteriori for the Synthesis model

• Instead of looking for x, consider the MAP for the code η

η̂? ∈ argmax
η∈RK

p(η|y)

= argmin
η∈RK

[− log p(y|η)− log p(η)]

= argmin
η∈RK

[
1

2
||y − W̄+Λ1/2η||22 − log p(η)

]
• Once you get η̂?, generate the image x̂? as

x̂? = W̄+Λ1/2η̂?

What interpretation?
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Reconstruction with the UDWT

Penalized least square with redundant dictionary

• Consider the redundant wavelet dictionary D = W̄+Λ1/2

D = ( d1, d2, . . . , dK︸ ︷︷ ︸
linearly dependent atoms

), ||di|| = λi, K > n

• Goal: Look for a code η ∈ RK , such that x̂ close to y

x̂ = Dη =

K∑
i=1

ηidi = “linear comb. of the redundant atoms di of D”

• Since D is redundant, different codes η produce the same image x.

• Penalize independently each ηi to select a relevant one

η̂? ∈ argmin
η∈RK

[
1

2
||y − W̄+Λ1/2η||22 −

K∑
i=1

log p(ηi)

]

What choice for log p(ηi)?
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Reconstruction with the UDWT

Penalized least square with redundant dictionary

• 1

2
||y −Dη||22 +

τ2

2
||η||22, ||η||22 =

∑
i η

2
i ← Ridge regression

• 1

2
||y −Dη||22 + τ ||η||1, ||η||1 =

∑
i |ηi| ← LASSO

• 1

2
||y −Dη||22 +

τ2

2
||η||0, ||η||0 =

∑
i 1{ηi 6=0} ← Sparse regression
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When D is redundant, these problems are no longer separable.

They require large-scale optimization techniques.
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Regularizations and optimization



Ridge regression

Ridge/Smooth regression

• Convex energy: E(η) = 1
2
||y −Dη||22 + τ2

2
||η||22

• Gradient: ∇E(η) = D∗(Dη − y) + τ2η

• Optimality conditions: η̂? = (D∗D + τ2IdK)−1D∗y

• For UDWT: this is an LTI filter ≡ convolution (non adaptive)

(a) y (b) Linear shrink (c) Ridge (d) Difference

Ridge 6≡ Linear shrinkage (except if D is orthogonal).
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Sparse regression

Sparse regression / `0 regularization (1/3)

• Energy: E(η) = 1
2
||y −Dη||22 + τ2

2
||η||0

• Penalty: ||η||0 = #non zero elements in η

• Non-convex: 0.5 = 1
2
(||0||0 + ||1||0) < ||0.5||0 = 1

• Produces optimal sparse solutions adapted to the signal ,

• But, non-differentiable and discontinuous. /

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

2

3

4

5

79



Sparse regression

Sparse regression / `0 regularization (2/3)

• If D is orthogonal: solution given by the Hard-Thresholding.

• Otherwise, exact solution obtained by brute force:

• For all possible support I ⊆ {1, . . . ,K} (set of non-zero coefficients)
• Solve the least square estimation problem:

argmin
(ηi)i∈I

1

2
||y −

∑
i∈I

ηiai||22

• Pick the solution that minimizes E.

• NP-hard combinatorial problem:

#subsets =

K∑
k=0

(
K

k

)
= 2K
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Sparse regression

Sparse regression / `0 regularization (3/3)

• Sub-optimal solutions can be obtained by greedy algorithms.

• Matching pursuit (MP): (Mallat, 1993)

1 Initialization: r ← y, η ← 0, k ← 0

2 Choose i maximizing |D∗r|i = | 〈di, r〉 |
3 Compute α = 〈r, di〉 /||di||22
4 Update r ← r − αdi
5 Update ηi = α

6 Update k ← k + 1

7 Back to step 2 while E(η) = 1
2
||r||22 + τ2

2
k decreases

• Lots of iterations: complexity O(kn), with k the sparsity of the solution.

• Each iteration requires to compute an UDWT.

• Extensions: OMP (Tropp & Gilbert, 2007), CoSaMP (Needel & Tropp, 2009)
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Least Absolute Shrinkage and Selection Operator (LASSO)

Convex relaxation: Take the best of both worlds: sparsity and convexity

LASSO / `1 regularization (Tibshirani 1996)

• Convex energy: E(η) = 1
2
||y −Dη||22 + τ ||η||1

• Non-smooth penalty: ||η||1 =
∑K
i=1 |ηi|

• If D is orthogonal: solution given by the Soft-Thresholding.

• Produces also sparse solutions adapted to the signal ,
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Least Absolute Shrinkage and Selection Operator

(a) Input (b) ST+UDWT (1s) (c) LASSO+UDWT (30s) (d) Difference

Though the solutions look alike, their codes η are very different.
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Least Absolute Shrinkage and Selection Operator
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(a) Image (b) Coarse 5 (c) Scale 5 (d) Scale 5 (e) Scale 5 (f) Scale 1 (g) Scale 1

The LASSO creates much sparser codes than ST only.
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Least Absolute Shrinkage and Selection Operator

Why use the LASSO if shrinkage in the UDWT provides similar results?

• Shrinkage in the UDWT domain

can only be applied for denoising problems.

• The LASSO can be adapted to inverse-problems:

x̂? = Dη̂? with η̂? ∈ argmin
η∈RK

[
1

2
||y −HDη||22 + τ ||η||1

]

But it requires solving a non-smooth convex optimization problem.

Solution: use sub-differential and Fermat’s rule.
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Non-smooth convex optimization

Definition (Sub-differential)

• Let f : Rn → R be a convex function, u ∈ Rn is a sub-gradient of f at

x∗, if for all x ∈ Rn

f(x) > f(x∗) + 〈u, x− x∗〉 .

• The sub-differential is the set of sub-gradients

∂f(x∗) = {u ∈ Rn : ∀x ∈ Rn, f(x) > f(x∗) + 〈u, x− x∗〉}.

If the sub-gradient is unique, f is differentiable and ∂f(x) = {∇f(x)}.
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Non-smooth convex optimization

Definition (Sub-differential)

• Let f : Rn → R be a convex function, u ∈ Rn is a sub-gradient of f at
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Non-smooth convex optimization

Theorem (Fermat’s rule)

Let f : Rn → R be a convex function, then

x∗ ∈ argmin
x∈Rn

f(x) ⇔ 0n ∈ ∂f(x∗)

If f is also differentiable, this corresponds to the standard rule ∇f(x∗) = 0n.

Minimizers are the only points with a horizontal tangent

87



Non-smooth convex optimization

Function (abs):

f :

R → R

x 7→ |x|

Sub-differential (sign)

∂f(x∗) =


{−1} if x∗ ∈ (−∞, 0)

{+1} if x∗ ∈ (0,∞)

[−1, 1] if x∗ = 0
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Non-smooth convex optimization

Proximal operator

• Let f : Rn → R be a convex function (+ some technical conditions). The

proximal operator of f is

Proxf (x) = argmin
z∈Rn

1

2
||z − x||22 + f(z)

• Remark: this minimization problem always has a unique solution, so the

proximal operator is without ambiguity a function Rn → Rn.

• Always non-expansive:

||Proxf (x1)− Proxf (x2)|| 6 ||x1 − x2||

• Can be interpreted as a denoiser/shrinkage for the regularity f .

Property

Proxγf (x) = (Id + γ∂f)−1x
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Non-smooth convex optimization

Proof.

argmin
z

1

2
||z − x||22 + γf(z) ⇔ 0 ∈ ∂

[
1

2
||z − x||22 + γf(z)

]
⇔ 0 ∈ ∂

[
1

2
||z − x||22

]
+ γ∂f(z)

⇔ 0 ∈ z − x+ γ∂f(z)

⇔ x ∈ z + γ∂f(z)

⇔ x ∈ (Id + γ∂f)(z)

⇔ z = (Id + γ∂f)−1x

Even though ∂f(x) is a set, the pre-image by Id + γ∂f is unique.
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Non-smooth convex optimization

Soft-thresholding

Proxγ|.|(x) = argmin
z∈R

1

2
(z − x)2 + γ|z|

= (Id + γ∂|.|)−1x =


x− γ if x > γ

x+ γ if x < −γ
0 otherwise
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Non-smooth convex optimization

Proximal operator of simple functions

Name f(x) Proxγf (x)

Indicator of

convex set C

{
0 if x ∈ C
∞ otherwise

ProjC(x)

Square 1
2
||x||22

x

1 + γ

Abs ||x||1 Soft-T(x, γ)

Euclidean ||x||2
(

1− γ

max(||x||2, γ)

)
x

Square+Affine 1
2
||Ax+ b||22 (Id + γA∗A)−1(x− γA∗b)

Separability

for x =
(
x1
x2

) g(x1) + h(x2)

(
Proxγg(x1)

Proxγh(x2)

)

More exhaustive list: http://proximity-operator.net
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Non-smooth convex optimization

Proximal minimization

• Let f : Rn → R be a convex function (+ some technical conditions).

Then, whatever the initialization x0 and γ > 0, the sequence

xk+1 = Proxγf (xk)

converges towards a global minimizer of f .

Proxγf (xk) = (Id + γ∂f)−1xk = argmin
z

1

2
||z − xk||22 + γf(z)

Compared to gradient descent

• No need to be differentiable,

• No need to have Lipschitz gradient,

• Works whatever the parameter γ,

• Requires to solve an optimization problem at each

step.
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Non-smooth convex optimization

Gradient descent:

read xk on the x-axis and evaluate its image by the function x− γ∇F (x).
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Non-smooth convex optimization

Proximal minimization:

Look at the set x+ γ∂F (x)
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Non-smooth convex optimization

Proximal minimization:

read xk on the y-axis and evaluate its pre-image by x+ γ∇F (x).
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Non-smooth convex optimization

Proximal minimization:

the larger γ the faster, but the inversion becomes harder (ill-conditioned).
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Non-smooth convex optimization

Toy example

• Consider the smoothing regularization problem

F (x) =
1

2
||∇x||22,2

• Its sub-gradient is thus given by

∂F (x) = {∇F (x) = −∆x}

• The proximal minimization reads as

xk+1 = (Id + γ∂F )−1xk

= (Id− γ∆)−1xk

• This is exactly the implicit Euler scheme for the Heat equation.
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Non-smooth convex optimization

Can we apply proximal minimization for the LASSO?

Proximal splitting methods

• The proximal operator may not have a closed form.

• Computing it may be as difficult as solving the original problem /

• Solution: use proximal splitting methods, a family of techniques

developed for non-smooth convex problems.

• Idea: split the problem into subproblems, that involve

• gradient descent steps for smooth terms,
• proximal steps for simple convex terms.
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Non-smooth convex optimization

min
x∈Rn

{E(x) = F (x) +G(x)}

Proximal forward-backward algorithm

• Assume F is convex and differentiable with L-Lipschitz gradient

||∇F (x1)−∇F (x2)||2 6 L||x1 − x2||2, for all x1, x2 .

• Assume G is convex and simple, i.e., its prox is known in closed form

ProxγG(x) = argmin
z

1

2
||z − x||22 + γG(z)

• The proximal forward-backward algorithm reads

xk+1 = ProxγG(xk − γ∇F (xk))

• For 0 < γ < 2/L, it converges to a minimizer of E = F +G.

Aka, explicit-implicit scheme by analogy with PDE discretization schemes.
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Non-smooth convex optimization

The LASSO problem: E(η) =
1

2
||y −Aη||22︸ ︷︷ ︸
F (η)

+ τ ||η||1︸ ︷︷ ︸
G(η)=

∑
i |ηi|

, A = HD

Iterative Soft-Thresholding Algorithm (ISTA) (Daubechies, 2004)

• F is convex and differentiable with L-Lipschitz gradient

∇F (η) = A∗(Aη − y) with L = ||A||22

• G is convex and simple, in fact separable:

ProxγG(η)i = Soft-T(ηi, γτ)

• The proximal forward-backward algorithm reads for 0 < γ < 2/L

ηk+1 = Soft-T(ηk − γ(A∗Aηk −A∗y), γτ)

and is known as Iterative Soft-Thresholding Algorithm (ISTA).

• Finally: x̂? = D̄η̂?
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Non-smooth convex optimization

Preconditioned ISTA (1/2)

• Remark

η̂? ∈ argmin
η∈RK

1

2
||y −Aη||22 + τ ||η||1, A = H W̄+Λ1/2︸ ︷︷ ︸

D

∈ argmin
η∈RK

1

2
||y −HW̄+Λ1/2η||22 + τ ||η||1

• Λ1/2 invertible: bijection between z = Λ1/2η and η = Λ−1/2z

• Solving for η is equivalent to solve a weighted LASSO for z

ẑ? ∈ argmin
z∈RK

1

2
||y −HW̄+z||22 + τ ||Λ−1/2z||1

∈ argmin
z∈RK

1

2
||y −Bz||22 +

K∑
i=1

τ

λi
|zi|, B = HW̄+

• In practice, this equivalent problem has better conditioning.
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Non-smooth convex optimization

Equivalent to: E(z) =
1

2
||y −Bz||22︸ ︷︷ ︸
F (z)

+ τ ||Λ−1/2z||1︸ ︷︷ ︸
G(z)=

∑
i
τ
λi
|zi|

, B = HW̄+

Preconditioned ISTA (2/2)

∇F (z) = B∗(Bz − y) with L = ||B||22

ProxγG(z)i = Soft-T

(
zi,

γτ

λi

)
• ISTA becomes for 0 < γ < 2/L

zk+1 = Soft-T

(
zk − γ(B∗Bzk −B∗y),

γτ

λi

)
• Finally: x̂? = W̄+ẑ?

• Leads to larger steps γ, better conditioning, and faster convergence.
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Non-smooth convex optimization

zk+1 = ProxγG(zk − γ∇F (zk))

= Soft-T

(
zk − γ(B∗Bzk −B∗y),

γτ

λi

)
with B = HW̄+

Bredies & Lorenz (2007): E(zk)−E(z?) decays with rate O(1/k)

Fast ISTA (FISTA)

zk+1 = ProxγG
(
z̃k − γ∇F (z̃k)

)
z̃k+1 = zk+1 +

tk − 1

tk+1
(zk+1 − zk)

tk+1 =
1 +

√
1 + 4t2k
2

, t0 = 1

Beck & Teboulle (2009): E(zk)−E(z?) decays with rate O(1/k2)
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Non-smooth convex optimization

(a) Input y: motion blur + noise (σ = 2)

50 100 150 200 250 300
10

-2
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-1

10
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1

10
2

ISTA

FISTA

(b) Convergence profiles

(c) Deconvolution ISTA(300)+UDWT (d) Deconvolution FISTA(300)+UDWT 103



Non-smooth convex optimization
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(a) Image (b) Scale 4 (c) Scale 4 (d) Scale 4 (e) Scale 3 (f) Scale 3 (g) Scale 3

FISTA converges faster: sparser codes given a limited time budget
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Sparsity: synthesis vs analysis



Sparse reconstruction: synthesis vs analysis

Sparse synthesis model with UDWT

• LASSO: η̂? ∈ argmin
η∈RK

1

2
||y −HW̄+Λ1/2η||22 + τ ||η||1

• Using the change of variable η = Λ−1/2z:

ẑ? ∈ argmin
z∈RK

1

2
||y −HW̄+z||22 + τ ||Λ−1/2z||1

Sparse analysis model with UDWT

• What about?

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Λ−1/2W̄x||1

• The change of variable η = Λ−1/2W̄x is not one-to-one.

• The two problems are not equivalent (unless W̄ is invertible).
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Sparse reconstruction: synthesis vs analysis
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Sparse reconstruction: synthesis vs analysis

Analysis versus synthesis (Elad, Milanfar, Rubinstein, 2007)

Generative: generate good images

x̂? = Dη̂? with η̂? ∈ argmin
η∈RK

1

2
||y −HDη||22 + τ ||η||pp, p > 0

Synthesis: images are linear combinations of a few columns of D.

Bayesian interpretation: MAP for the sparse code η.

Discriminative: discriminate between good and bad images

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||pp, p > 0

Analysis: images are correlated with a few rows of Γ.

Bayesian interpretation: MAP for x with an improper Gibbs prior.
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Sparse reconstruction: synthesis vs analysis

η̂? ∈ argmin
η∈RK

1

2
||y −HDη||22 + τ ||η||pp (`pp-synthesis)

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||pp (`pp-analysis)

Common properties

Solution Problem

p = 0 Optimal sparse Non-convex & discontinuous (NP-hard)

0 < p < 1 Sparse Non-convex & continuous but non-smooth

p = 1 Sparse Convex & continuous but non-smooth

p > 1 Smooth Convex & differentiable

p = 2 Linear Quadratic

• Γ square and invertible ⇒ equivalent for D = Γ−1.

• Γ full-rank and p = 2 ⇒ equivalent for D = Γ+.

• LTI dictionaries ⇒ redundant filter bank.
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Sparse reconstruction: synthesis vs analysis

η̂? ∈ argmin
η∈RK

1

2
||y −HDη||22 + τ ||η||pp (`pp-synthesis)

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||pp (`pp-analysis)

Synthesis

• D: synthesis dictionary.

• Atoms need to span images.

⇒ Low- & high-pass filters

⇒ Im[D] ≈ Rn

• Redundancy favor sparsity.

• K dimensional problem (> n).

• Prior separable.

Analysis

• Γ: analysis dictionary.

• Atoms need to sparsify images.

⇒ High-pass filters only

⇒ Ker[Γ] 6= ∅ (⊃ DC, coarse)

• Redundancy decreases sparsity.

• n dimensional problem (< K).

• Prior non-separable.

Quiz: What analysis dictionary is LTI and not too redundant?
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Sparse reconstruction: synthesis vs analysis

η̂? ∈ argmin
η∈RK

1

2
||y −HDη||22 + τ ||η||pp (`pp-synthesis)

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||pp (`pp-analysis)

Link between analysis models and variational methods

• p = 2: Analysis model = Tikhonov regularization.

• p = 1 & Γ = ∇: Analysis model = anisotropic Total-Variation (TV)

TV filter bank = Horizontal and vertical gradient

︸ ︷︷ ︸
Spatial filter bank

︸ ︷︷ ︸
Spectral f.b. (real part)

︸ ︷︷ ︸
Spectral f.b. (imaginary part)

Can we use proximal forward-backward for `1-analysis prior?
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Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22︸ ︷︷ ︸

F (x)

+ τ ||Γx||1︸ ︷︷ ︸
G(x)

(`1-analysis)

Proximal forward-backward for the `1-analysis problem?

• F convex and differentiable

• G convex but not simple (not separable)

−→ cannot use proximal forward backward /

• Exception: for denoising H = Idn (see: Chambolle algorithm, 2004)

Need another proximal optimization technique.
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Non-smooth optimization

min
x∈Rn

{E(x) = F (x) +G(x)}

Alternating direction method of multipliers (ADMM) (∼1970)

• Assume F and G are convex and simple (+ some mild conditions).

• For any initialization x0, x̃0 and d0, the ADMM algorithm reads as

xk+1 = ProxγF (x̃k + dk)

x̃k+1 = ProxγG(xk+1 − dk)

dk+1 = dk − xk+1 + x̃k+1

• For γ > 0, xk converges to a minimizer of E = F +G.

Fast version: FADMM, similar idea as for FISTA (Goldstein et al., 2014).

Related concepts: Lagrange multipliers, Duality, Legendre transform.

How to use it for `1 analysis priors?
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Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||1 (`1-analysis)

ADMM + Variable splitting (1/3)

• Define: X =

(
x

z

)
∈ Rn+K

• Consider: E(X) = F (X) +G(X)

with:


F

(
x

z

)
= ||y −Hx||22 + τ ||z||1

G

(
x

z

)
=

{
0 if Γx = z

∞ otherwise

• Remark 1: Minimizing E solves the `1-analysis problem.

• Remark 2: F and G are convex and simple ⇒ ADMM applies.
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Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||1 (`1-analysis)

ADMM + Variable splitting (2/3)

Applying formula from slide 92:

F

(
x

z

)
= ||y −Hx||22 + τ ||z||1 −→ ProxγF

(
x

z

)
=

(
(Idn + γH∗H)−1(x+ γH∗y)

Soft-T(z, γτ)

)

G

(
x

z

)
=

{
0 if Γx = z

∞ otherwise︸ ︷︷ ︸
Indicator of the convex set
C={(x,z) ; Γx=z}

−→ ProxγG

(
x

z

)
=

(
Idn

Γ

)
(Idn + Γ∗Γ)−1(x+ Γ∗z)︸ ︷︷ ︸

Projection on C
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Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||1 (`1-analysis)

ADMM + Variable splitting (3/3)

xk+1 = (Idn + γH∗H)−1(x̃k + dkx + γH∗y)

zk+1 = Soft-T(z̃k + dkz , γτ)

x̃k+1 = (Idn + Γ∗Γ)−1(xk+1 − dkx + Γ∗(zk+1 − dkz))

z̃k+1 = Γx̃k+1

dk+1
x = dkx − xk+1 + x̃k+1

dk+1
z = dkz − zk+1 + z̃k+1

If H is a blur, and Γ a filter bank, (Idn + γH∗H)−1 and (Idn + Γ∗Γ)−1 can

be computed in the Fourier domain in O(n logn).
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Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||1 (`1-analysis)

Application to Total-Variation Γ = ∇

xk+1 = (Idn + γH∗H)−1(x̃k + dkx + γH∗y)

zk+1 = Soft-T(z̃k + dkz , γτ)

x̃k+1 = (Idn +∇∗∇)−1(xk+1 − dkx +∇∗(zk+1 − dkz))

z̃k+1 = ∇x̃k+1

dk+1
x = dkx − xk+1 + x̃k+1

dk+1
z = dkz − zk+1 + z̃k+1

∇∗ = −div and ∇∗∇ = −∆
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Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||1 (`1-analysis)

Application to Total-Variation Γ = ∇

xk+1 = (Idn + γH∗H)−1(x̃k + dkx + γH∗y)

zk+1 = Soft-T(z̃k + dkz , γτ)

x̃k+1 = (Idn −∆)−1(xk+1 − dkx − div(zk+1 − dkz))

z̃k+1 = ∇x̃k+1

dk+1
x = dkx − xk+1 + x̃k+1

dk+1
z = dkz − zk+1 + z̃k+1

∇∗ = −div and ∇∗∇ = −∆
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Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||1 (`1-analysis)

Application to sparse analysis with UDWT Γ = Λ−1/2W̄

xk+1 = (Idn + γH∗H)−1(x̃k + dkx + γH∗y)

zk+1 = Soft-T(z̃k + dkz ,
γτ

λi
)

x̃k+1 = (Idn + W̄ ∗W̄ )−1(xk+1 − dkx + W̄ ∗(zk+1 − dkz))

z̃k+1 = W̄ x̃k+1

dk+1
x = dkx − xk+1 + x̃k+1

dk+1
z = dkz − zk+1 + z̃k+1

Tight-frame: W̄ ∗W̄ = Idn
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Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||1 (`1-analysis)

Application to sparse analysis with UDWT Γ = Λ−1/2W̄

xk+1 = (Idn + γH∗H)−1(x̃k + dkx + γH∗y)

zk+1 = Soft-T(z̃k + dkz ,
γτ

λi
)

x̃k+1 =
1

2
(xk+1 − dkx + W̄ ∗(zk+1 − dkz))

z̃k+1 = W̄ x̃k+1

dk+1
x = dkx − xk+1 + x̃k+1

dk+1
z = dkz − zk+1 + z̃k+1

Tight-frame: W̄ ∗W̄ = Idn
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Sparse analysis – Results

Deconvolution with UDWT (5 levels, Db2)

(a) Blurry image y (noise σ = 2) (b) Synthesis (FISTA) (c) Analysis (FADMM)
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Sparse analysis – Results
S

yn
th

es
is
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n
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ys

is

(a) 1 level (b) 2 level (c) 3 level (d) 4 level (e) 5 level

Analysis allows for less decomposition levels.

⇒ leads to faster algorithms.
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Sparse analysis – Results

(a) Noisy (σ = 40) (b) Analysis UDWT(4) (c) +block (orien.+col.) (d) Difference

• As for TV, group coefficients across orientations/color using `2,1 norms:

||Γz||2,1

• The soft-thresholding becomes the group soft-thresholding:[
Proxγ||·||2,1(z)

]
i

=

{
zi − γ zi

||zi||2
if ||zi||2 > γ

0 otherwise
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Shrinkage, Sparsity and Wavelets – What’s next?

Reminder from last class:

Modeling the distribution of images is complex (large degree of freedom).

Applying LMMSE on patches → increase performance

Next class:

What if we use sparse priors, not for the distribution of images,

but for the distribution of patches?
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Shrinkage, Sparsity and Wavelets – Further reading

For further reading

Sparsity, shrinkage and recovery guarantee:
• Donoho & Johnstone (1994); Moulin & Liu (1999); Donoho and Elad (2003);

Gribonval and Nielsen (2003); Candès and Tao (2005); Zhang (2008); Candès

and Romberg (2007).

• Book: Statistical Learning with Sparsity (Hastie, Tibshirani, Wainwright, 2015).

Wavelet related transforms:
• Warblet/Chirplet (Mann, Mihovilovic et al., 1991–1992), Curvelet (Candès &

Donoho, 2000), Noiselet (Coifman, 2001), Contourlet (Do & Vetterli, 2002),

Ridgelet (Do & Vetterli, 2003), Shearlets (Kanghui et al., 2005), Bandelet (Le

Pennec, Peyré, Mallat, 2005), Empirical wavelets (Gilles, 2013).

• Book: A wavelet tour of signal processing (Mallat, 2008)

Non-smooth convex optimization:
• Douglas-Rachford splitting (Combettes & Pesquet, 2007), Split Bregman

(Goldstein & Osher, 2009), Primal-Dual (Chambolle & Pock, 2011), Generalized

FB (Raguet et al., 2013), Condat algorithm (2014).

• Book: Convex Optimization (Boyd, 2004).
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Questions?

Next class: Patch models and dictionary learning

Sources, images courtesy and acknowledgment

• L. Condat

• A. Horodniceanu

• G. Peyré

• J. Salmon

• Wikipedia
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