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Motivations

2
(@) y=z+w (b) z=Fy (C)A;ﬁ

Wiener filter (LMMSE in the Fourier domain)
® Assume Fourier coefficients to be decorrelated (white),

® Modulate frequencies based on the mean power spectral density A?7.
Limits

. . Unable to preserve edges,
® | inear: no adaptation to the content =- .
Blurry solutions.



Motivations

Facts and consequences

® Assume Fourier coefficients to be decorrelated (white)
® Removing Gaussian noise = need to be adaptive = Non linear

® Assuming Gaussian noise + Gaussian prior = Linear

Deductive reasoning

Fourier coefficients of clean images are not Gaussian distributed

Underlying prior z + p(x) Gaussian prior « ~ A(ui; L)

How are Fourier coefficients distributed?



Motivations — Distribution of Fourier coefficients

How are Fourier coefficients distributed?

1. Perform whitening with DFT

A clean image 2 Whitening 7 = L%

close to white noise

Standard deviation \;
for each frequency

Var[z] = L = EAE* with E = %F
diag(A) = (\},...,\2) = n~*MPSD



Motivations — Distribution of Fourier coefficients

How are Fourier coefficients distributed?

2. Look at the histogram
® The histogram of 7 has a symmetric bell shape around 0.

® |t has a peak at 0 (a large number of Fourier coefficients are zero).

It has large/heavy tails (many coefficients are “outliers” /abnormal).
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(b) Whitening 7 of = (c) Histogram of n



Motivations — Distribution of Fourier coefficients

How are Fourier coefficients distributed?

3. Look for the distribution that best fits (in log scale)

® Gaussian: bell shape /, peak X, tail X

® Laplacian: bell shape X, peak 4/, tail 4/

® Student: bell shape 4/, peak X, tail v/ (heavier)
[ ]

Others: alpha stables and generalized Gaussian distributions
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(a) Whitening 7 of x (b) Histogram of n (c) Log-histogram of 7



Motivations — Distribution of Fourier coefficients

Model expression (zero mean, variance = 1)

® Gaussian: bell shape 1/, peak X, tail X

o

1
i) = ex
p(n:) Vor p< > )
® Laplacian: bell shape X, peak 4/, tail 4/

1
p(n) = 75 oxp (V2
® Student: bell shape 4/, peak X, tail v/ (heavier)

r+1/2
)=+ (—21
PO =7\ r—2)+ 2

(Z normalization constant, r > 1 controls the tails)



Motivations — Distribution of Fourier coefficients

) ] ® images are concentrated in an elliptical cluster,
® Gaussian prior ] ] )
® outliers are rare (images outside the cluster).

® Peaky & heavy tailed priors: shape

3 Linear %5 .
A Union
combination
; - of subspaces
£ of subspaces
; ;. \

Images =

Coefficients 17

Whitening transform

N

sparsity
Gaussian prior Laplacian prior Student prior

° : most images lie in one of the branches of the star,

° : most of their coefficients 7, are zeros,

o : outlier coefficients are frequent.



Shrinkage functions



Shrinkage functions

Consider the following Gaussian denoising problem

® Let y € R" and = € R? be two random vectors such that
y|z ~ N(z,0"1d,)

Elz] =0 and Varjz] =L = EAE"

® Let p=A"Y2E*z  (whitening / decorrelation of x)

(such as Laplacian or Student)



Shrinkage functions

Bayesian shrinkage functions

® Assume n; are also

® Then, the MMSE and MAP estimators both read as

2* = E2 where 2; =3s(z;; \i,0) and z=E"y
~~ —_——

—~—
Come back shrinkage Change of basis

The function z; — s(zi; i, o) is called

® Unlike the LMMSE, s will depend on the prior distribution of 7;.

As for the LMMSE, the solution can be computed in the eigenspace.

® We say that the estimator is in the eigenspace (ex: Fourier).
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Shrinkage functions

Remark

independence =- uncorrelation Whitening is a necessarily step

. . for independence but not a
—wuncorrelation = —independence ..
sufficient one.

correlation =- dependence (Except in the Gaussian case)

How are the shrinkage functions defined for the MMSE and MAP?

11



Shrinkage functions

® Recall that the MMSE is the posterior mean
_ Jen wp(yl2)p(z) do

2 = zp(z|y) dz
/'n ([y) fR,, (y|z)p(x) dz

MMSE Shrinkage functions

® Under the previous assumptions

= Ez where 2; =3s(z;; \i,0) and z=E"y
~—~—
Come back shrinkage Change of basis

[ 3

Jxzexp (—525 ) pa () d

with  s(z; A\,0) = - -
Jeexp (-G ) pq (5) a2

202

where p,, is the prior distribution on the entries of 7

® Separability:
12



Shrinkage functions

® Recall that the MAP is the optimization problem

2" € argmax p(z|y) = argmin [~ log p(y|z) — log p(x)]
IGR'” IER'VL

MAP Shrinkage functions
® Under the previous assumptions

2* = EZ where 2; =s(z;; \i,0) and z=E"y
~—~ \ , —~—
Come back shrinkage Change of basis

_ 32 =
with S(Z; )\,0’) = argmin M — logpn (;):|

ZER 20’2
where p,, is the prior distribution on the entries of 7.

® Separability:
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Shrinkage functions

Example (Gaussian noise + Gaussian prior)

® MMSE Shrinkage

~ (272)2 32 ~
JpZexp (7 202 W) dz A2
S(Z7 )‘70) = (2_2)2 2 - = )\2 +O.2Z
Jrexp (_ 202 2/\2) dz

® MAP Shrinkage

{(z — 2 22 } A2

s(z; A 0) = amgmin | S0+ o | = 555

Z€ER

® Gaussian prior: MAP = MMSE = Linear shrinkage.
® We retrieve the LMMSE as expected.
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Shrinkage functions

Gaussian noise + Gaussian prior

s(z; Ao)
v & ® O

2=s(z A0)
sz A0)

SNR = \/o =14

15



Posterior mean — Shrinkage functions — Examples

Example (Gaussian noise + Laplacian prior)

® MMSE Shrinkage

[ Zexp (—7(22_052)2 — 7\/5;2\) dz

e
L. 1ot (@) e () +) e
e P Ca R

® MAP Shrinkage (soft-thresholding)

0 if <
-2 V2 _ ol <
?4— 1 =q z—7 if z>v

z4+y if z<—vy

s(z; A\, o) = argmin
ZeR

Soft-T(z,v)

Non-gaussian prior: MAP # MMSE —
16



Shrinkage functions

Gaussian noise + Laplacian prior

s(z; Ao)

SNR = \/o =14

17



Posterior mean — Shrinkage functions — Examples

Example (Gaussian noise + Student prior)
® MMSE Shrinkage

No simple expression, requires 1d numerical integration

® MAP Shrinkage

No simple expression, requires 1d numerical optimization

For efficiency, the 1d functions
can be evaluated offline and stored in a look-up-table.

18



Shrinkage functions

Gaussian noise + Student prior

s(z; Ao)

2=s(z A0)

SNR = \/o =14

19



Posterior mean — Shrinkage functions — Examples

® Coefficients are shrunk towards zero e Signs are preserved

® Non-Gaussian priors leads to non-linear filtering:
® sparsity: small coefficients are shrunk (likely due to noise)
® robustness: large coefficients are preserved (likely encoding signal)

® Larger SNR = g = shrinkage becomes close to identity.

20



Posterior mean — Shrinkage functions — Examples

Interpretation
10 = 10 7 10 71
. s 3 # o /

= = Sparsity
< =<
A L M Jump
, Non robust L.
-4 / . = sensitive
F to outliers
" .
.
-8 //
,
-10

5 0 5 10

Sparsity: zero for small values.
Robustness: remain close to the identity for large values.
Transition: bias/variance tradeoff.

Can we design our own shrinkage according to what we want?

21



Shrinkage functions

Shrinkage functions (a.k.a, thresholding functions)

® Pick a shrinkage function s satisfying

® Shrink: |s(z)| < |2 (non-expansive)
® Preserve sign: z-s(z) 20

® Kill low SNR: éiglos(z; \o)=0

® Keep high SNR: Ahinoo s(z; N\o) =z

® Increasing: z1 <22 & s(21) < s(22)

° No need to relate s to a prior distribution p,,.

22



Shrinkage functions

A few examples (among many others)

10
8 8
6 6
4 4 /
_ _ ,
5 2 c o2 -
=< =< //
8 oo/ —dl—c_d 8§ Ob===ccar— ==
= S = 7
I 2 Vil I 2 il
w y 2
. 7
4 . 4 4
6 6
-8 8
10 -10
10 5 0 5 10 -10 5 4 5 10

Hard-thresholding MCP SCAD
® Though not necessarily related to a prior distribution,
® Often related to a , ex:
0 if |2|<T
Hard-T(z) = argmin z—22—|—7'21 s =
) .zgema [( ) {Z#O}] z otherwise

® Hard-thresholding: similar behavior to Student’s shrinkage.
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Shrinkage functions

Link with penalized least square (1/2)

e D=LY?=EA"Y?isan of n atoms/words
D = (dl,dz, .. .,dn) with Hle =\; and <d“ dJ> = (0) (fOI‘ 7 75])

® Goal: Look for the n coefficients 7;, such that & close to y
T =Dn= Zmdi = “linear comb. of the d; of D"
=1
® Choosing 7, = <erﬁ’ y>, ie. n=A"Y2E*y, is optimal:
w=1m

but, it also reconstructs the noise component.

® |dea:

24



Shrinkage functions

Link with penalized least square (2/2)
® Penalization on the coefficients controls shrinkage and sparsity:

22
= )\f +T2 Zi

1 72 .
* Sly-Dil3+ Sl = &

1 . .
* Sly=Dnli+7lnh = %=Soft-T(z,%) with 7=

1 72 ) . i
* 5ly - Dy + Sl = 2 =Hard-T (2i,%)  with 7 = +

n 1/p
norm: pfo = lim (> nf ] = g
4y pseudo-norm: |n|o ;li% ( r12>

=1

[n]o small compared to n

25



Posterior mean — Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

sig = 20
>y = x + sig * np.random.randn(x.shape)

nl, n2 = y.shape[:2] z=Fy/yn

n = i 2 = s(zi; Mi,0)

1lbd = np.sqrt(prior_mpsd(nl, n2) / n) L
2=+nF 2

z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)

zhat = shrink(z, 1bd, sig)

xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)

26



Posterior mean — Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(b) A

sig = 20

y = x + sig * np.random.randn(x.shape)

nl, n2 = y.shape[:2] z=Fy/yn

0 =l * n2 21:>‘(:/2 /\/ o)

» 1bd = np.sqrt(prior_mpsd(nl, n2) / n) L

2=+nF 2

z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)

zhat = shrink(z, 1bd, sig)

xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)
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Posterior mean — Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

sig = 20

y = x + sig * np.random.randn(x.shape)

nl, n2 = y.shape[:2] z=Fy/yn

n = i 2 = s(zi; Mi,0)

1lbd = np.sqrt(prior_mpsd(nl, n2) / n) L

2=+nF 2

>z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)

zhat = shrink(z, 1bd, sig)

xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)
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Posterior mean — Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(b) z (c) Linear/Wiener (d) Soft-T (e) Hard-T
(=Gaussian) (=Laplacian) (~Student)

sig = 20
y = x + sig * np.random.randn(x.shape)
nl, n2 = y.shape[:2] z=Fy/v/n
n = i 2 = s(zi; \iy0)
1bd = np.sqrt(prior_mpsd(nl, n2) / n)
&=+nF 'z
z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)
» zhat = shrink(z, lbd, sig)
xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)
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Posterior mean — Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

S

I

11
l\

'-W.mm h

(a) = (b) y=2+w (c) Linear/Wiener (d) Soft-T (e) Hard-T

(=G (=Laplacian) (~Student)

sig = 20

y = x + sig * np.random.randn(x.shape)

nl, n2 = y.shape[:2] z=Fy/Vn

n =nl *n2 ] 2 = s(zi; \iy0)

1bd = np.sqrt(prior_mpsd(nl, n2) / n) L

2=+nF 2
z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)
zhat = shrink(z, 1bd, sig)
» xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)
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Shrinkage functions — Fourier domain — Results




Shrinkage functions — Fourier domain — Results

‘ialll‘mm i

4,
i

(a) = (b) y (6 =40) (c) Linear/Wiener  (d) Soft-T (e) Hard-T
(= Gaussian) (=Laplacian) (~Student)
Bias < > Variance
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ns — Fourier domain — Results

(b) y (6 =60) (c) Linear/Wiener  (d) Soft-T (e) Hard-T

(=Gaussian) (=Laplacian) (~Student)

Bias < Variance




Shrinkage functions — Fourier domain — Results

(a) = (b) y (6 =120) (c) Linear/Wiener  (d) Soft-T (e) Hard-T
(= Gaussian) (=Laplacian) (~Student)
Bias < Variance
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Posterior mean — Limits of shrinkage in the Fourier domain

Limits of shrinkage in the discrete Fourier domain

(a) = () y

® Linear shrinkage (Wiener)
= Non-adaptive,

Non-linear shrinkage
= Adaptive convolution,

Li f-T FardEn
® Adapts to the frequency content, (&) Linear - (d) Soft’T - (e) Hard T/

® but not to the spatial content.

. 8(2i; T, 0) A
zi:s(zi;ﬂo')zzixzi & z=v(y)*y
v spatial average
element-wise product adapted to the spectrum of y.

28



Consequences

® Modulating Fourier coefficients = Non spatially adaptive

® Assuming Fourier coefficients to be white+sparse = Shrinkage in Fourier

Deductive reasoning

LB BIRTIRIE

C LAV VN

==z Columns were the Fourier atoms
=EZZUW

==zZuY

DFT: F

S

What transform can make signal white and sparse and
captures both spatial and spectral contents?

29



Wavelet transforms



Introduction to wavelets — Haar (1d case) [Alfréd Haar (1909)]

Canonical basis Fourier basis
[
I8
I
| &
it BEAVAY
M & 5
EERAVAVAVAVAR
| =}
— =% WWWW |g
= 8=
=% AN
18
I, =
= N
— "
space non localized
1 0 0 O 1 1 1 1
010 0 1 —27il/4 —27i2/4 —27i3/4
Id= and F = efzm'z/4 672m'4/4 6—2771'6/4
0 0 1 0 1 e ' e ' e '
00 0 1 1 -2mi3/4  ,—2mi6/4  ,—2mi9/4
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Introduction to wavelets — Haar (1d case) [Alfréd Haar (1909)]

Canonical basis Fourier basis Haar basis (1 scale) Haar basis (2 scales)
Y )y )
{5} = )
s g
Jr I% /\/ S I I S —
(=) 1 A
TERAVAVIR R I e
= o
| =
—— i WM )z s
2= (S ] ES
— e 12 L[
= 2 02
— Ll . 1 1
space non localized space space
1 0 0 o (1 1 1 1
HlSt:L 0 1 1 and H2Y _ all 1 -1 -1
v2 |1 -1 0 0 vzl -1 0 0
0o 0 1 -1 vz \0 0 1 =i
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Introduction to wavelets — Haar (2d case)

e~ "aEnia "y

(a) H™ (4 x 4 image)

(c) H¥z

2d Haar representation
® Coarse sub-band

® \/ertical detailed sub-band
4 sub-bands

Horizontal detailed sub-band

® Diagonal detailed sub-band

32



Introduction to wavelets — Haar (2d case)

e~ "aEnia "y

(a) H™ (4 x 4 image)

Multi-scale 2d Haar representation
® Repeat recursively J times
® Dyadic decomposition
® Multi-scale representation

® Related to scale spaces

32



Introduction to wavelets — Haar (2d case)

e~ "aEnia "y

(a) H™ (4 x 4 image)

Multi-scale 2d Haar representation
® Repeat recursively J times
® Dyadic decomposition
® Multi-scale representation

® Related to scale spaces
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Introduction to wavelets — Haar (2d case)

e~ "aEnia "y

(a) H™ (4 x 4 image)

Multi-scale 2d Haar representation
® Repeat recursively J times
® Dyadic decomposition
® Multi-scale representation

® Related to scale spaces
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Introduction to wavelets — Haar transform - Filter bank

* <L

* -

filter bank decimation

34



Introduction to wavelets — Haar transform - Separability

Properties of the 2d Haar transform
® Separable: 1d Haar transforms in horizontal and next vertical direction
® First: perform a low pass and high pass filtering

® Next: perform decimation by a factor of 2

Can we choose other low and high pass filters
to get a better transform?

35



Discrete wavelets

Discrete wavelet transform (DWT) (1/3) (1d and n even)

® Let h € R™ (with periodical boundary conditions) satisfying
> hi=0
i=0
n—1
> ohi=1
i=0
n—1

and Z hihiyor =0 for all integer k # 0

i=0
Example (Haar as a particular case)

(0...0 —1 +1 0...0)
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Discrete wavelets

Discrete wavelet transform (DWT) (2/3) (1d and n even)
® Define the high and low pass filters H : R” — R™ and G : R" — R" as

n—1

(H.%')k = (h*x)k, = thxk_z
1=0

n—1

(Gz)k = (g*x)k = »_ giwn—i where g; = (—=1)"hpn_1-s

1=0

n—1
® Note: necessarily Zgi =2

=0

Example (Haar as a particular case)

0...0 —1 +1 0...0)

(0..0 +1 +1 0...0)
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Discrete wavelets

® Define the decimation by 2 of a matrix M € R™*" as
M\L2 _ HM[: :2, :]u c Rn/2><n
i.e., the matrix obtained by removing every two rows.

® Mo z: apply M to x and next remove every two entries.

Discrete wavelet transform (DWT) (3/3) (1d and n even)
Lt w = [ C¥) eroxr
H|,
* v — Wa: ,

Then ® Columns of W: :
o »=Wu:

38



Multi-scale discrete wavelets

T coarse
G— \L2 3rd scale } coefficients
L G — o H — 2 — 3rd scale
o detailed
input G \L2 B b2 2nd scale coefficients
signal H— \LQ 1st scale
3 scales wavelet, transform
Multi-scale DWT (1d and n multiple of 27) [Mallat, 1989]
i ) s W(J—l)—th 10)
Defined recursively as w/th = 0 1d w

39



Multi-scale discrete wavelets

Implementation of 2D DWT (n1 and ny multiple of 27)
def dwt(x, J, h, g): # 2d and multi-scale
if J ==
return x

nl, n2 = x.shapel[:2]

ml, m2 = (int(nl / 2), int(n2 / 2))

z = dwtld(x, h, g)

z = flip(dwtild(£flip(z), h, g))

z[:ml, :m2] = dwt(z[:m1, :m2], J - 1, h, g)
return z

def dwtid(x, h, g): # 1d and 1scale
coarse = convolve(x, g)
detail = convolve(x, h)
z = np.concatenate((coarse[::2, :], detaill[::2, :]), axis=0)
return z

40



Multi-scale discrete wavelets

Multi-scale Inverse DWT (1d and n multiple of 2”)

(W(J-l)-th)fl o)

Defined recursively as (W7 ™! = w—! 0 14

where W= = W* = (G* T H” Tz) € R™*"™

and MT2: remove every two columns.

M7s x : insert 0 every two entries in z and next apply M.

coarse . *
coefficients { 3rd scale TZ G
3rd scale Tz — H* T2 — G*
Cetailed 2nd scale Ty — H*:%)—» To — G* 1

coefficients
1st scale T — H*

output
signal

3 seales wavelet inverse transform
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Multi-scale discrete wavelets

Implementation of 2D IDWT (n1 and ny multiple of 27)
def idwt(z, J, h, g): # 2d and multi-scale
if J ==
return z

nl, n2 = z.shapel[:2]

ml, m2 = (int(nl / 2), int(a2 / 2))

x = z.copy()

x[:m1, :m2] = idwt(x[:m1, :m2], J - 1, h, g)

x = flip(idwt1d(£flip(x), h, g))
x = idwtld(x, h, g)
return x
def idwtild(z, h, g): # 1d and 1scale

nl = z.shape[0]

ml = int(nl / 2)

coarse, detail = np.zeros(z.shape), np.zeros(z.shape)
coarsel[::2, :], detaill::2, :] = z[:m1, :], z[ml:, :]

x = convolve(coarse, gl[::-1]) + convolve(detail, h[::-1])
return x

42



Discrete wavelets — Limited support

Discrete wavelet with limited support

® Consider a high pass filter with of size m = 2p (even).
For instance for m = 4
ha hs O 0 ho hi
ho hi ha hz O 0

0 h() hl h2 h3 0

0 .. 0 ho hi ha hs
ha hs 0 S 0 ho hi

Then h defines a wavelet transform if it satisfies the three conditions

> hi=0 and Y hi=1 and Y hihiyor =0 fork=1top—1

® This system has 2p unknowns and 1 + p independent equations.
® If p=1, 2p = 1+ p, this implies that the solution is unique (Haar).

® QOtherwise, one has
43



Discrete wavelets — Daubechies’ wavelets

Daubechies’ wavelets (1988)
® Daubechies suggests adding the p — 1 constraints

2p—1
Ziqhizo forg=1top—1 ( )

=0

® For p = 2, the (orthonormal) Daubechies’ wavelets are defined as

Wi +hi+h3+h3 =1 L
ho+hi+ha+hs =0 1 3+4\/§
o h=t— | 1
hoho + hihs =0 V2 3
hi + 2hs + 3h3 =0 1—v3

® The corresponding DWT is referred to as Daubechies-2 (or Db2).
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Continuous wavelets

Continuous wavelet transform (CWT) (1d)

® Continuum of locations ¢ € R and scales a > 0,

° ofx : R — R
_ oo * ’ ’ r_
C(a,t) — wa,t (t)fE(t)dt 7< x wa,t>
—— o ~—
wavelet coefficient signal wavelet
where * is the complex conjugate.
® Yo , translated and scaled versions of ¥
Yorlt)) = o= (L1
2 a Vva a
o U: satisfying

+oo +o0o
/ U(t)dt =0 and / [T(t)> dt =1 < oo

—o0o —o0o

(zero-mean) (unit-norm / square-integrable)
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Continuous wavelets

Inverse CWT (1d)
® The is given by

1 [hee gt ; ; ;
t) = — — t)Wat () da dt
,CL‘( ) qu ‘/_oo A ‘a‘zc(av )w )t ( ) a

oo | (u)|? >
with Cy = / Y du where W is the Fourier transform of W.
0

Relation between CWT /DWT (1d)
® The DWT can be seen as the discretization of the CWT
o inscale: a =1,2,4,...,27

® Uniform discretization in time at scale j with step 27: t = 1:27:n

46



Continuous wavelets

Twin-scale relation (1d)

® The CWT is orthogonal (inverse = adjoint), if and only if ¥ satisfies
m—1 m—1

V() =v2Y h®(2t—i) and ®(t)=V2D  g:®(2t — 1)
= i=0

where h and g are high- and low-pass filters defining a DWT.
® & is called

® Note: potentially m = oc.

Twin-scale relation: allows to define a CWT from DWT and vice-versa.
The CWT may not have a closed form (approximated by the )
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Continuous and discrete wavelets

Father wavelet Mother wavelet Low pass filter High pass filter

05 05 l
- Bl

Popular wavelets are:
Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);

Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990);
Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Haar/Db1

Some classical wavelet transforms are not orthogonal.

Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets).
Two filters for the direct, and two others for the inverse.
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Continuous and discrete wavelets

2 Father wavelet > Mother wavelet 1 Low pass filter 4 High pass filter
15 15
1 1 05 0.5
0.5 0.5 I
0 0 0 T ‘ 0 ‘
c o l 1
8 1 1 05 05
-1.5 -1.5
2 2 1 1
2 1 0 1 2 2 1 0 1 2 -1 0 1 2 3 4 1 0 1 2 3 4

Popular wavelets are:
Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);

Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990);
Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.

Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets).
Two filters for the direct, and two others for the inverse.
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Continuous and discrete wavelets

Father wavelet Mother wavelet ; Low pass filter , High pass filter
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Some classical wavelet transforms are not orthogonal.

Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets).
Two filters for the direct, and two others for the inverse.
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Continuous and discrete wavelets
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Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);

Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990);
Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.

Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets).
Two filters for the direct, and two others for the inverse.
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Wavelets and sparsity

Wavelets perform image compression
® Haar encodes constant signals with one coefficient,

® Db-p encodes (p-1)-order polynomials with p coefficients.

Consequences:

Polynomial /Smooth signals are encoded with very few coefficients,
® Coarse coefficients encode the smooth underlying signal,

® Detailed coefficients encode non-smooth content of the signal,

® Typical signals are concentrated on few coefficients,

® The remaining coefficients capture only noise components.
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Wavelets and sparsity

Wavelets perform image compression
® Haar encodes constant signals with one coefficient,

® Db-p encodes (p-1)-order polynomials with p coefficients.

Consequences:

Polynomial /Smooth signals are encoded with very few coefficients,
® Coarse coefficients encode the smooth underlying signal,

® Detailed coefficients encode non-smooth content of the signal,

® Typical signals are concentrated on few coefficients,

® The remaining coefficients capture only noise components.
= Heavy tailed distribution with a peak at zero,

i.e., wavelets favor sparsity.
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Wavelets as a sparsifying form

Fourier

(b) Fz (c) A (d) (Fz)i/X;

Fourier (u;,v; freq. of component 1)
« E'=F//n
® A\ =n 'MPSD and co if i =0
® Arbitrary DC component
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Wavelets as a sparsifying transform

Fourier

(b) Fz (d) (Fz);/\;

(52}

ko

2|

>

=

=

(f) Wz (g) A (h) (Wz)i/X;
Fourier (u;,v; freq. of component 1) Wavelets  (j; scale of component i)

* E*=F/\/n * EF=W
e \2 =pn 'MPSD and oo if i = 0 o\, =a2fi"tand coif j; = J

® Arbitrary DC component ® Arbitrary coarse component
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Distribution of wavelet coefficients

x10*

2 0 oo N

w

-4 -2 0 2

(c) Histogram of n

I
4 Student

-4 2 0 2 4

(d) Histogram of n
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Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

sig = 20
> v = x + sig * nr.randn(*x.shape)
z=Wy
z = im.dwt(y, 3, h, g) . : \ )
Zi = S|\ Zi; Niy, O

zhat = shrink(z, 1lbd, sig)
xhat = im.idwt(zhat, 3, h, g) F=wW13
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Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

zhat =

xhat

=20
x + sig * nr.randn(*x.shape)

im.dwt(y, 3, h, g)
shrink(z, 1lbd, sig)
im.idwt(zhat, 3, h, g)

(b) z (Haar)
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Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

» zhat
xhat

=20
x + sig * nr.randn(*x.shape)

im.dwt(y, 3, h, g)
shrink(z, 1lbd, sig)
im.idwt(zhat, 3, h, g)

(b) 2 (Haar+LMMSE)

z=Wy
% = s(zi; \i,0)
=Wz
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Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

zhat =

» xhat

(b) 2 (Haar+LMMSE)

20
x + sig * nr.randn(*x.shape)

im.dwt(y, 3, h, g)
shrink(z, 1lbd, sig)
im.idwt(zhat, 3, h, g)

z=Wy
% = s(zi; \i,0)
E=W'z
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Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y (b) 2 (Daubechies+LMMSE) (c) z
sig = 20
y = x + sig * nr.randn(*x.shape)
z=Wy
z = im.dwt(y, 3, h, g) .
zhat = shrink(z, lbd, sig) Fi = S<:’: Ai, o)
» xhat = im.idwt(zhat, 3, h, g) F=wW13
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Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y (b) 2 (Daubechies+Soft-T) (c) z
sig = 20
y = x + sig * nr.randn(*x.shape)
z=Wy
z = im.dwt(y, 3, h, g) .
zhat = shrink(z, lbd, sig) Fi = S<:’: Ai, o)
» xhat = im.idwt(zhat, 3, h, g) F=wW13
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Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y (b) 2 (Daubechies+Hard-T) (c) z
sig = 20
y = x + sig * nr.randn(*x.shape)
z=Wy
z = im.dwt(y, 3, h, g) .
zhat = shrink(z, lbd, sig) Fi = S<:’: Ai, o)
» xhat = im.idwt(zhat, 3, h, g) F=wW13
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Shrinkage in the wavelet domain

(a) y (6 =20) (b) Db24+LMMSE (c) Db2+Soft-T  (d) Db2+Hard-T (e) Haar+Hard-T

For large noise: Blocky effects and Ringing artifacts
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Shrinkage in the wavelet domain

(a) y (0 = 40) (b) Db24+LMMSE (c) Db2+Soft-T  (d) Db2+Hard-T (e) Haar+Hard-T

For large noise: Blocky effects and Ringing artifacts
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Shrinkage in the wavelet domain

(a) y (6 =60) (b) Db24+LMMSE (c) Db2+Soft-T  (d) Db2+Hard-T (e) Haar+Hard-T

For large noise: Blocky effects and Ringing artifacts

53]



Shrinkage in

(a) y (0 =120) (b) Db2+LMMSE (c) Db2+Soft-T  (d) Db2+Hard-T (e) Haar+Hard-T

For large noise: Blocky effects and Ringing artifacts
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Undecimated wavelet transforms




Limits of the discrete wavelet transform

® Wavelet shrinkage is not translation invariant.

® This is due to the decimation step:
G ¢2 nxn
= eR h M | = "M[::2, :1"
W (H $2> where a2 [ ]
[ ]

This explains the blocky artifacts that we observe.
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Undecimated discrete wavelet transform (UDWT)

; HEE 551 ® Haar transform groups pixels by clusters of 4.

l HE : } ® Blocks are treated independently to each other.

I::IIEEEEI—! ® When similar neighbor blocks are shrunk
differently, it becomes clearly visible in the image.

T . .*: :? ® This arises all the more as the noise level is large.

Figure 1 — Haar DWT
What if we do not decimate?

= UDWT, aka, stationary or translation-invariant wavelet transform.
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Undecimated discrete wavelet transform (UDWT)

e
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FrEEE - HEE e e e H::H
Haar discrete wavelet transform (DWT) Haar undecimated discrete wavelet transform (UDWT)
1-scale DWT 1-scale UDWT
® For a 4 X 4 image: ® For a 4 X 4 image:
4 x 4 coefficients. 8 x 8 coefficients.
® For n pixels: K = n coefficients. ® For n pixels: K = 4n coeffs.
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(Holschneider et al., 1989)

A trous algorithm (with holes)

Interleave rows and columns of zeros
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Haar UDWT, second scale

gl= 1L pt

=

Haar UDWT, first scale
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Undecimated discrete wavelet transform (UDWT)

DWT: Mallat’s dyadic pyramidal multi-resolution scheme

J: G — \Lz — 3rd scale } coarse
G — |2 H— o

Gﬂin:H%J,z

coefficients
3rd scale

2nd scale def?i}edt
input coefficients
signal H— {2 1st scale
3 scales wavelet: transform
UDWT: A trous algorithm — GP: inject p zeros between each filter coeffs
:3 P . coarse
’_, G Srdiscalc } coefficients
r Gt a3 3rd scale
@ H1 2nd scale detg{led
input r coefficients
H

signal

3 scales undecimated wavelet. transform

1st scale

Multi-scales: K = (1 + J(2% — 1))n coeffs (J: ##scales, d = 2 for images)
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Undecimated discrete wavelet transform (UDWT)

Implementation of 2D UDWT (A trous algorithm)

def udwt(x, J, h, g):
if J == 0:
return x[:, :, np.newaxis]

tmph = flip(convolve(flip(x), h)) / 2

tmpg = flip(convolve(flip(x), g)) / 2

detail = np.stack((convolve(tmpg, h),
convolve (tmph, g),
convolve(tmph, h)), axis=2)

coarse = convolve(tmpg, g)

h2 = interleaveO(h)

g2 = interleave0O(g)

z = np.concatenate((udwt(coarse, J - 1, h2, g2), detail), axis=2)

return z

Can be easily modified to reduce memory usage.
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Undecimated discrete wavelet transform (UDWT)

(e) Detailed Scale #3 (f) Detailed Scale #4 (g) Detailed Scale #5 (h) Detailed Scale #6

What about its inverse transform?




Undecimated discrete wavelet transform (UDWT)

DWT — Wavelet basis — and inverse DWT

® The DWT W € R™™ ™ has n columns and n rows.

The n columns/rows of W are orthonormal.
® The inverse DWT is W~ = W™,

® One-to-one relationship between an image and its wavelet coefficients.

UDWT - Redundant wavelet dictionary

The UDWT W € RE*" has K = (1 4+ J(2¢ — 1))n rows and n columns.
® The rows of W cannot be linearly independent: not a basis.
® They are said to form a

® Since W is non square, it is not invertible.

Note:
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Undecimated discrete wavelet transform (UDWT)

Pseudo-inverse UDWT

® Nevertheless, the n columns are orthonormal, then: W* = W
® |t satisfies W™ W =1d,,, but WW T # Idg

. w .. wt .. .
® image — coefficients — back to the original image,

. . wt . %% o a g
® coefficients — image — not necessarily the same coefficients.
® Satisfies the Parseval equality
(Wz, Wy) = (z, W Wy) = (z, W Wy) = (z, y)

® In the vocabulary of linear algebra: W is called a

Consequence: an algorithm for
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Undecimated discrete wavelet transform (UDWT)

Implementation of 2D Inverse UDWT

def iudwt(z, J, h, g):
if J ==0:
return z[:, :, 0]
h2 = interleaveO(h)
g2 = interleaveO(g)
coarse = iudwt(z[:, :, :-3], J - 1, h2, g2)
tmpg = convolve(coarse, gl::-1]) + \
convolve(z[:, :, -3], h[::-1])
tmph = convolve(z[:, :, -2], gl::-1]1) + \
convolve(z[:, :, -1], h[::-1])
x = (flip(convolve(flip(tmpg), gl::-11)) +
flip(convolve (flip(tmph), h[::-1]1))) / 2
return x

Can also be easily modified to reduce memory usage.
Can we be more efficient?
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Multi-scale discrete wavelets

Filter bank

® The UDWT of z for subband k, z — (Wz)j is

= It's a convolution.

® The UDWT is a filter bank:

a set of band-pass filters that separates
the input image into multiple components.

® Each filter can be

® Direct and inverse transform:
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decimated discrete wavelet nsform (U

Filters

Product

Subbands

(a) Coarse 2 (b) Details 2 (c) Details 2 (d) Details 2 (e) Details 1 (f) Details 1 (g) Details 1

Haar with J = 2 levels of decomposition
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Undecimated discrete wavelet transform (UDWT)

(a) Coarse 2 (b) Details 2 (c) Details 2 (d) Details 2 (e) Details 1 (f) Details 1 (g) Details 1

Haar: band pass with side lobes. Db8: closer to ideal band pass.




Undecimated discrete wavelet transform (UDWT)

HERRIL
HEEEM
HEEES

Db4 with J = 6 levels of decomposition
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Undecimated discrete wavelet transform (UDWT)

UDWT: Creation of the filter bank (offline)

def udwt_create_fb(nl, n2, J, h, g, ndim=3):
if J == 0:
return np.ones((n1, n2, 1, *[1] * (ndim - 2)))
h2 = interleaveO(h)
g2 = interleaveO(g)
fbrec = udwt_create_fb(nl, n2, J - 1, h2, g2, ndim=ndim)
gfl = nf.fft(fftpad(g, nl), axis=0)
hfl = nf.fft(fftpad(h, nl), axis=0)
gf2 = nf.fft(fftpad(g, n2), axis=0)
hf2 = nf.fft(fftpad(h, n2), axis=0)
fb = np.zeros((nl, n2, 4), dtype=np.complex128)
fb[:, :, 0] = np.outer(gfl, gf2) / 2
fb[:, :, 1] = np.outer(gfl, hf2) / 2
fb[:, :, 2] = np.outer(hfl, gf2) / 2
fb[:, :, 3] = np.outer(hfl, hf2) / 2
fb = fb.reshape(nl, n2, 4, *[1] * (ndim - 2))
fb = np.concatenate((fb[:, :, 0:1] * fbrec, fb[:, :, -3:]1),
axis=2)
return fb
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Undecimated discrete wavelet transform (UDWT)

UDWT: Direct transform using the filter bank (online)

def fb_apply(x, fb):
x = nf.fft2(x, axes=(0, 1))

z = fb * x[:, :, np.newaxis]
z = np.real(nf.ifft2(z, axes=(0, 1)))
return z

UDWT: Inverse transform using the filter bank (online)

def fb_adjoint(z, fb):

nf.fft2(z, axes=(0, 1))
(np.conj(fb) * z).sum(axis=2)

x = np.real(nf.ifft2(x, axes=(0, 1)))
return x

z

X
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Reconstruction with the UDWT

Shrinkage with UDWT

e Consider a denoising problem y = x + w with noise variance o>.
® Shrink the K > n coefficients independently.

—W7'5 where 2 = s(zi; Niyo) and z = Wy
S~~~ —_——— ~—~

Pseudo-inverse shrinkage Redundant representation

Rule of thumb for soft-thresholding:

® For the orthonormal DWT W': increase \; as fd(j‘

® For the tight-frame UDWT W: increase \; as: 24(7i=1/2)

(js scale for coefficient i, d = 2 for images).
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Reconstruction with the UDWT

(b) DWT(3)+Haar+HT (c) DWT(3)4Db2+HT

(e) UDWT(3)+Db2+HT
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Reconstruction with the UDWT

(b) DWT(3)+Haar+HT (c) DWT(3)4Db2+HT

(d) UDWT(3)+Haar+HT (e) UDWT(3)+Db2+HT (F) UDWT(3)+Db8+HT .



Reconstruction with the UDWT

(c) DWT(3)4Db2+HT

(d) UDWT(1)+Db2+HT (e) UDWT(3)+Db2+HT () UDWT(5)+Db2+HT .



Reconstruction with the UDWT

(b) DWT(3)+Haar+HT

(e) UDWT(3)+Db2+HT (f) UDWT(3)+Db2+ST .



Reconstruction with the UDWT

(b) UDWT+Lin. (c) UDWT+HHT (d) DWT+HT



Reconstruction with the UDWT

(b) UDWT+Lin. (c) UDWT+HT (d) DWTHHT



Reconstruction with the UDWT

(b) UDWT+Lin. (c) UDWT+HT (d) DWTHHT




Reconstruction with the UDWT

(a) y (o = 120) (b) UDWT+Lin. (c) UDWT+HHT (d) DWT+HT




Reconstruction with the UDWT

2*=W7T2 where % =s(zi; Niyo;) and z= Wy
N—— ———— —

Pseudo-inverse shrink K coefficients Redundant representation

Connection with Bayesian shrinkage?

® Since the rows of W are linearly dependent,

the (non-white).

® Shrink the K > n coefficients independently,
even though they cannot be assumed independent.

® This estimator has ,

it does not correspond to the MMSE or MAP.

How to use the UDWT in the Bayesian context?
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Reconstruction with the UDWT

Bayesian analysis model

Whitening model: Consider n = A™Y/2Wz (1) coeffs)
such that E[n] = 0,, and Var[n] = Id,

images can be transformed to white coeffs.

/\ Non-sense when rows of W are redundant.

Bayesian synthesis model

Generative model: Consider z = W A2y (1 code)
such that E[n] = Ok and Var[n] = Idx

images can be generated from a white code.

© Always well-founded.
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Reconstruction with the UDWT

Forward model: y =z + w

Maximum a Posteriori for the Synthesis model

® Instead of looking for z, consider the MAP for the code n

7" € argmax p(nly)
neRK

= argmin [—log p(y|n) — logp(n)]
neRK

. 1 =
= argmin ||y — WA 2|3 — log p(n)
ncRK

® Once you get 77*, generate the image * as

F — W+A1/2ﬁ*
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Reconstruction with the UDWT

Penalized least square with redundant dictionary

® Consider the D=WTA'Y/?

D:( d17d27...7d[{ ), HdZH:)\“ K}n
———

linearly dependent atoms

® Goal: Look for a code 7 € R™, such that & close to y
K
&=Dn= nd; = "linear comb. of the d; of D"
i=1

® Since D is redundant, different codes 7 produce the same image x.

® Penalize independently each 7); to select a relevant one

K
o |1 b ad/2 12
7" € argmin |y = WA |5 = Tlogp(n:)

neRK i=1
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Reconstruction with the UDWT

Penalized least square with redundant dictionary

1 2 T2 2
e _|y—D -
51y 1z + <l

1
o Sly—Dal3 +lls,

0

1 2 T2
e _|y—D -
51y = Dalz + |l

Inl3 =3, n2 + Ridge regression

Il = >, Imil + LASSO

[mlo = >; 1m0} < Sparse regression

5

4l

Penalization
w
T

o
T

o
T

Code n

When D is redundant, these problems are no longer separable.

They require

7



Regularizations and optimization




Ridge regression

Ridge/Smooth regression

e Convex energy: E(n) = |y — Dn|3 + é"ﬁ“%
® Gradient: VE(n) = D*(Dn—y) +7°n
® Optimality conditions: 7* = (D*D + 7’ldx) "' D*y
® For UDWT: this is an LTI filter = convolution (non adaptive)

(a) y (b) Linear shrink (c) Ridge (d) Difference

Ridge # Linear shrinkage (except if D is orthogonal).
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Sparse regression

Sparse regression / {; regularization (1/3)

2
® Energy: E(n) = 5ly — Dnll3 + T Inlo
® Penalty: Inllo = #non zero elements in 7
e Non-convex: 0.5 = 2(10lo + I1lo) < [0.5]0 = 1

® Produces optimal sparse solutions adapted to the signal ©®

® But, non-differentiable and discontinuous. ®

IS
T

r w
T T
L L

Penalization

o
T
[ ]
L

Code
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Sparse regression

Sparse regression / {; regularization (2/3)

® |f D is orthogonal: solution given by the Hard-Thresholding.

® Otherwise, exact solution obtained by

® For all possible support Z C {1,..., K} (set of non-zero coefficients)
® Solve the least square estimation problem:

1
axgmin <y — 3 niail3

(Mi)iez i€

® Pick the solution that minimizes E.

® NP-hard combinatorial problem:

K [ p
#subsets:Z P =2

k=0
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Sparse regression

Sparse regression / {; regularization (3/3)

® Sub-optimal solutions can be obtained by algorithms.

® Matching pursuit (MP): (Mallat, 1993)
@ Initialization: r <y, n <0, k<0
@® Choose ¢ maximizing |D*r|; = | (d;, 7) |
© Compute o = (r, d;) /|| di|3
® Update r <+ r — ad;
® Update n; = «
® Update k < k+1
1

@ Back to step 2 while E(n) = 1|r[5 + ;k decreases

® Lots of iterations: complexity O(kn), with k the sparsity of the solution.
® Each iteration requires to compute an UDWT.

° : OMP (Tropp & Gilbert, 2007), CoSaMP (Needel & Tropp, 2009)
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Least Absolute Shrinkage and Selection Operator (LASSO)

Convex relaxation:

LASSO / /; regularization (Tibshirani 1996)
* Convex energy: E(n) = 3ly — Dl3 + rlnl
® Non-smooth penalty: Inl = Zfil [7:]

® If D is orthogonal: solution given by the Soft-Thresholding.

® Produces also sparse solutions adapted to the signal ©

5

© IS
T T

Penalization

o
T

<

Code n
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Least Absolute Shrinkage and Selection Operator

LSR5 S5
"qj-l‘ L~ "ﬁﬂx -~

(a) Input (b) STHUDWT (Is)  (c) LASSO+UDWT (30s) (d) Difference

Though the solutions look alike, their codes 7 are very different.




Least Absolute Shrinkage and Selection Operator

=
2
@)
o]
I
~E
(5]
-
2
@)
=)
T
°%
)
wn
<
-

(b) Coarse 5 (c) Scale5 (d) Scale5 (e) Scale5 (f) Scalel (g) Scale 1

The LASSO creates much sparser codes than ST only.




Least Absolute Shrinkage and Selection Operator

Why use the LASSO if shrinkage in the UDWT provides similar results?

e Shrinkage in the UDWT domain
can only be applied for denoising problems.

e The LASSO can be adapted to

Ak

Ak . A~k . 1
i* = D" with #* € argmin |=|y — HD7|3 + 7|0
nerRK 2

But it requires solving a non-smooth convex optimization problem.
Solution: use and
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Non-smooth convex optimization

Definition (Sub-differential)

® Let f:R"™ — R be a convex function, u € R" is a of f at
z*, if for all z € R™

f@) > f@) + (u,z — 7).
® The is the set of sub-gradients

Of(@") ={u eR" :Vz € R", f(z) = f(z") + (u,z — x™)}.

T

If the sub-gradient is unique, f is differentiable and df(z) = {V f(z)}.

86



Non-smooth convex optimization

Definition (Sub-differential)

® Let f:R"™ — R be a convex function, u € R" is a of f at
z*, if for all z € R™

f@) > f@) + (u,z — 7).
® The is the set of sub-gradients

Of(@") ={u eR" :Vz € R", f(z) = f(z") + (u,z — x™)}.

T

If the sub-gradient is unique, f is differentiable and df(z) = {V f(z)}.

86



Non-smooth convex optimization

Definition (Sub-differential)

® Let f:R"™ — R be a convex function, u € R" is a of f at
z*, if for all z € R™

f@) > f@) + (u,z — 7).
® The is the set of sub-gradients

Of(@") ={u eR" :Vz € R", f(z) = f(z") + (u,z — x™)}.

T

If the sub-gradient is unique, f is differentiable and df(z) = {V f(z)}.

86
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Non-smooth convex optimization

Theorem (Fermat’s rule)

Let f : R™ — R be a convex function, then

" € argmin f(z) < 0, € 9f(z")
seR™

If fis also differentiable, this corresponds to the standard rule V f(z*) = 0,,.

Minimizers are the only points with a horizontal tangent
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Non-smooth convex optimization

Function (abs): Sub-differential (sign)
;- R —R {-1} ifz" € (—00,0)
Nz = of(x*) = {+1} ifz* € (0,00)
[-1,1] ifz*=0
y ! y 05

1
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Non-smooth convex optimization

Function (abs):

R —R
s

Sub-differential (sign)

{-1} ifz* € (—00,0)
of(x*) = ¢ {+1} if 2" € (0,00)
[-1,1] fz*=0
! /(@)

1
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Non-smooth convex optimization

Function (abs): Sub-differential (sign)
Iy R —R {-1} ifa" € (—00,0)
Nz = Of(x*) =< {+1} if z* € (0,00)
[-1,1] ifz*=0
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Non-smooth convex optimization

Function (abs): Sub-differential (sign)
;- R —R {-1} ifz" € (—00,0)
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Non-smooth convex optimization

Proximal operator

® Let f:R"™ — R be a convex function (+ some technical conditions). The
of fis

1
Prox;(z) = argmin = |z — z|3 + f(z)
2eRn 2

® Remark: this minimization problem always has a unique solution, so the
proximal operator is without ambiguity a function R" — R".

® Always non-expansive:

| Prox (1) — Proxy (w2)| < |a1 — a2
® Can be interpreted as a denoiser/shrinkage for the regularity f.
Property
Prox,(z) = (Id + v9f) 'z
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Non-smooth convex optimization

Proof.

3

.1 1
argmin §||zfl||§+’yf(z) 0o {§||szﬂ”§+7f(z)]

0ed Enz _ xns] 1 40f(2)

0€z—z+v0f(2)
z € z+70f(2)

z € (Id +~0f)(2)
z=(Id+~0f) 'z

t T O

Even though 0f(x) is a set,
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Non-smooth convex optimization

Soft-thresholding
1 2
Prox,||(z) = argmin —(z — z)~ + v|z|
z€R 2
z—v if z>7v

=(Md+~9|.) e ={ x4y if z<—y
0 otherwise

Set Function \@\
79|.|(x)
+y ————
T
-
Soft-thresholding
Add the identity Take the inverse

(symmetry wrt y = z)
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Non-smooth convex optimization

Proximal operator of simple functions

Name f(x) Prox- ¢ (z)
Indicator of 0 ifxeC .
i Projq(x)
convex set C oo otherwise
12 i
Square Lfz13 =
Abs |1 Soft-T(z, )
Euclidean ]2 (1 - A) 0
max(|z2,7)

Square+Affine 1Az + b3 (Id + ~vA*A) " (z — vA*D)
Separability Prox4(x1)

v z1) + h(z o
for © = (T;) 9(@1) (w2) (Proxyh(:m)

More exhaustive list: http://proximity-operator.net
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Non-smooth convex optimization

Proximal minimization

® Let f:R"™ — R be a convex function (+ some technical conditions).

Then, whatever the initialization 2° and v > 0, the sequence
" = Prox, s (z*)

converges towards a of f.

1k .1
Proxys(¢") = (Id +~8f)"'z" = argmin |z — 2[5 +7/(2)

Compared to gradient descent
® No need to be differentiable,
® No need to have Lipschitz gradient,
® Works whatever the parameter ~,

® Requires to solve an optimization problem at each
step.
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Non-smooth convex optimization

z =2z —VF(z)
=
VF(z)=0

Gradient descent:
read z* on the x-axis and evaluate its image by the function z — YV F(x).
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Non-smooth convex optimization

T z € z + YOF(z)
=
0 € 0F (x)

Proximal minimization:
Look at the set = + yOF(x)
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Non-smooth convex optimization

Jy\ z € x4+ YOF(x)
/,\

=
0 € OF(x)

Proximal minimization:

read " on the y-axis and evaluate its pre-image by z + YV F(z).
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Non-smooth convex optimization

yeax+ WaF(:t)
Q

T z € x4+ YOF(x)

=
0 € OF(x)

Proximal minimization:

the larger ~ the faster, but the inversion becomes harder (ill-conditioned).
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Non-smooth convex optimization

Toy example

® Consider the smoothing regularization problem

1
F(z) = §||Vz

2

® |ts sub-gradient is thus given by
OF(z) = {VF(x) = —Az}
® The proximal minimization reads as

"t = (Id + yoF) " '2*
= (Id —yA) 'z”

® This is exactly the implicit Euler scheme for the Heat equation.
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Non-smooth convex optimization

Proximal splitting methods

® The proximal operator may not have a closed form.
® Computing it may be as difficult as solving the original problem ®

® Solution: use , a family of techniques
developed for non-smooth convex problems.

® |dea: split the problem into subproblems, that involve

® gradient descent steps for smooth terms,
® proximal steps for simple convex terms.
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Non-smooth convex optimization

min {E(z) = F(z) + G(z)}

TER™

Proximal forward-backward algorithm

® Assume F' is convex and differentiable with
|IVF(z1) — VF(2z2)|2 < L|z1 — x2]2, forall z1, =2 .
® Assume G is convex and , I.e., its prox is known in closed form
.1 2
Prox,(2) = argmin | — 213 +~G(2)
® The reads
"t = Prox,q(z” — yVF(a"))
® For 0 < v < 2/L, it converges to a minimizer of £ = F + G.

Aka, explicit-implicit scheme by analogy with PDE discretization schemes.
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Non-smooth convex optimization

1
The LASSO problem: Em) = 5ly - Anl3+ 7nli . A=HD
— _
Fn) G(m)=3%; In:l
Iterative Soft-Thresholding Algorithm (ISTA) (Daubechies, 2004)

® F'is convex and differentiable with
VFE(n) = A"(An—y) with L=|A|3
® (G is convex and , in fact separable:
Proxya(n); = Soft-T(n;, yT)
® The proximal forward-backward algorithm reads for 0 < v < 2/L
7" = Soft-T(n" — v(A* An* — A*y),y7)
and is known as

® Finally: v = Di*
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Non-smooth convex optimization

Preconditioned ISTA (1/2)

® Remark

7" € argmin *Hy Anl3 +7lnl, A=HWTAY?

nGR D

1 =
€ argmin _ |y — HW A |3 + 7]
neRK
e A2 invertible: bijection between z = A2y and n = A™/22

® Solving for 7 is equivalent to solve a weighted LASSO for z

£* € argmin —||y HW™ 2|3 + 7|A 22|
zeRK

€ argmin 7||y Bz|; + Z |z,| B=HW"

z€RK

® |n practice, this equivalent problem has
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Non-smooth convex optimization

1 . _
Equivalent to: E(2) = 5ly - Bz|3+ 7|A™Y?z,, B=HWT*
T i =% Sl

Preconditioned ISTA (2/2)
VF(z) = B*(Bz—y) with L=|B|3
Proxya(z): = Soft-T (zi, Z\—T)

® ISTA becomes for 0 < v < 2/L

—SoftT(z — 4(B*B2* — B*y), 7;)

® Finally: = Wt

® | eads to
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Non-smooth convex optimization

2" = Prox,q (2" — yVF(z"))

= Soft-T <zk —~y(B*Bz* — B*y), Ki> with B=HW"

Bredies & Lorenz (2007):

Fast ISTA (FISTA)

1 = Prox,c (zk - WF(;’“))

~ 1 c+1 tk? =1 1
Zk:+ _ Zk+ + 7(zk+ _ Zk:)

tht1

B 1—|—«/1—0—4t2

il = ,to =

Beck & Teboulle (2009):
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Non-smooth convex optimization

50 100 150 200
Iteration k

(a) Input y: motion blur + noise (o = 2) (b) Convergence profiles

(c) Deconvolution ISTA(300)+UDWT (d) Deconvolution FISTA(300)+UDWT




Non-smooth convex optimization

—
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™
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. \ 4 2, ~ g SN B
(a) Image  (b) Scale 4 (c) Scale 4 (d) Scale 4 (e) Scale 3 (f) Scale 3 (g) Scale 3

FISTA(300)

FISTA converges faster: sparser codes given a limited time budget




Sparsity: synthesis vs analysis




Sparse reconstruction: synthesis vs analysis

Sparse synthesis model with UDWT

" .1 =
® | ASSO: n" € argmin §||y — HW+A1/27]||3 + 7|nl1

neRK

e Using the change of variable n = A~%/?2:

- 1 = _
Z* € argmin ny—HW+zH§ +7|A 1/22H1
zERK 2

Sparse analysis model with UDWT
® \What about?

1 —1/2x
2" € argmin §||y — Hz|2 + 7|A W),y
zER™

® The change of variable n = A~2Wz is not one-to-one.

. (unless W is invertible).
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Sparse reconstruction: synthesis vs analysis

i

. Linear i Union
, combination i of non-orthogonal :*
" of subspaces A subspaces -

n
5 Images = under synthesis prior
S Dn
Z. \ | Coefficients n : ]
n sparsity i
i o A
_— H
@ N~ — i
wn
>
E Dtz
<
.. Linear Union :
3 combination " of non-orthogonal
¥ of subspaces subspaces
Images = under analysis prior
Gaussian prior Laplacian prior Student prior

106



Sparse reconstruction: synthesis vs analysis

Analysis versus synthesis (Elad, Milanfar, Rubinstein, 2007)

Generative: generate good images

. N .1
i* = Dn* with 7" € argmin ~|y — HDn|5 + 7|95, p>0
,,IGRI\ 2

images are linear combinations of a few columns of D.

MAP for the sparse code 7.

Discriminative: discriminate between good and bad images

A Kk . 1
2 € argmin 5”3,/ — Hm||§ +7|Tz|h, p>0
zERM

images are correlated with a few rows of I'.

MAP for x with an improper Gibbs prior.
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Sparse reconstruction: synthesis vs analysis

* . 1 .
#* € argmin - |y — HDn|3 + 7|n|5 (¢5-synthesis)
neRK 2
* 1 , .
&" € argmin o ly — Hz|3 + 7|Tz|? (¢5-analysis)
TER™
Solution Problem
p=0 Optimal sparse  Non-convex & discontinuous (NP-hard)
0<p<1 Sparse Non-convex & continuous but non-smooth
p= Sparse Convex & continuous but non-smooth
p>1 Smooth Convex & differentiable
p=2 Linear Quadratic

e T square and invertible = equivalent for D = I'"*.
® T full-rank and p = 2 = equivalent for D = T'".

® | Tl dictionaries = redundant filter bank.
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Sparse reconstruction: synthesis vs analysis

* . 1 .
7" € argmin ~ |y — HDn|3 + 7|3 (¢5-synthesis)
neERK 2
* 1 ; .
&" € argmin o ly — Hz|3 + 7|Tz|? (¢5-analysis)
TER™
® D: synthesis dictionary. ® T': analysis dictionary.
® Atoms need to span images. ® Atoms need to sparsify images.
= Low- & high-pass filters = High-pass filters only
= Im[D] ~ R" = Ker[I'] # 0 (D DC, coarse)
® Redundancy favor sparsity. ® Redundancy decreases sparsity.
® K dimensional problem (> n). ® 1 dimensional problem (< K).
[ ]

Prior separable. ® Prior non-separable.

Quiz: What analysis dictionary is LTI and not too redundant?
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Sparse reconstruction: synthesis vs analysis

" € argmin Ly~ HDnl? + 7ol (¢7-synthesis)
neERK
x 1 .
Z* € argmin 5”1/ — Hz|3 + 7|Tz|? (¢b-analysis)
TER™

Link between analysis models and variational methods
® p=2: Analysis model = Tikhonov regularization.

*p=1&TI'=V: Analysis model = anisotropic Total-Variation (TV)

TV filter bank = Horizontal and vertical gradient

Spatial filter bank Spectral f.b. (real part) Spectral f.b. (imaginary part)

Can we use proximal forward-backward for /;-analysis prior?
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Non-smooth optimization

* . 1 .
&% € argmin = |y — Hz|3 + 7|Tz|: (£1-analysis)
zERM 2 N——
Fla) G(zx)

Proximal forward-backward for the ¢;-analysis problem?

® [ convex and differentiable
® (G convex but (not separable)

— cannot use proximal forward backward ®

® Exception: for denoising H = Id,, (see: Chambolle algorithm, 2004)
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Non-smooth optimization

min {E(z) = F(z) + G(z)}

TER™
Alternating direction method of multipliers (ADMM) (~1970)
® Assume F and G are (+ some mild conditions).

® For any initialization z°, #° and d°, the ADMM algorithm reads as

"t = Prox, r (8" + d¥)
! = Prox,q (et — d¥)

41 ; 1, ~k+1
dF = gF — g 4 gR T

® For v > 0, 2" converges to a minimizer of E = F + G.

Fast version: FADMM, similar idea as for FISTA (Goldstein et al., 2014).

Related concepts: Lagrange multipliers, Duality, Legendre transform.
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Non-smooth optimization

* . 1 .
2" € argmin 5”7] — Hz|3 + 7|Tz|s (¢1-analysis)
zER™

(1/3)

® Define: X = ( ) e RK
® Consider: = F(X

<> = ly — Hz[ + 7]z)x

with:
_J 0 if Te==2
z - oo otherwise

® Remark 1: Minimizing E solves the ¢;-analysis problem.
® Remark 2: F and G are convex and simple = ADMM applies.
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Non-smooth optimization

* . 1 .
2" € argmin 5”7] — Hz|3 + 7|Tz|s (¢1-analysis)
zER™

(2/3)

Applying formula from slide 92:

Soft-T(z,v7)

z\ )] 0 if Tz==z¢ z\ (Id, B =T s o
¢ <z> B { oo otherwise — e (z) B ( r ) (Hep Sp LB SR 2)

Indicator of the convex set Projection on C
=(@.2) s Te=z

x x Id, +yH*H) ' (z + vH*
F (Z) =|y— Hzl2+7]z}y — Proxyr <:> _ <( + 7 YNz +y y))
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Non-smooth optimization

* . 1 .
2" € argmin 5”7] — Hz|3 + 7|Tz|s (¢1-analysis)
zER™

(3/3)

g = (Id, + yH"H) (3" + df + vHy)

2 = Soft—T(ElC +dF, ~T)

= (1d, + ) @ — df 4+ T (T - dY))
2k+1 _ Fik-ﬂ

dEY = gk Rt g R

dlzc+1 _ dl; . Zk+1 + 2k+1

If H is a blur, and T" a filter bank, (Id, +yH*H)™" and (Id, + T'*T")~! can
be computed in the Fourier domain in O(nlogn).
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Non-smooth optimization

* . 1 .
2" € argmin 5”7] — Hz|3 + 7|Tz|s (¢1-analysis)
wERn
Application to Total-Variation r=V

2" = (Idn +yH"H) ™" (&* + df + vH"y)

2P = Soft-T(Z" + d¥, 1)

i‘k+1 _ (Idn + V*V)fl(mkﬂ . d}; + v*(zk+1 . d];))
FhH1 _ gkt

k41 k k41 | ~k+1
ditt = gF — g Rt

dlz+1 _ dlzc o Zk+1 + 2k+1

V' =—div and V'V=-A
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Non-smooth optimization

* . 1 .
2" € argmin 5”7] — Hz|3 + 7|Tz|s (¢1-analysis)
wERn
Application to Total-Variation r=V

g = (Id, + yH"H) (3" + df + vHy)

2 = Soft—T(ElC +dF, ~T)

= (1d, — A) 7Nz - df — div(z*T - db))
2k+1 _ ij+1

k41 k k41 | ~k+1
ditt = gF — g gt

dlz+1 _ dlzc o Zk+1 + 2k+1

V' =—div and V'V=-A
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Non-smooth optimization

* . 1 .
2" € argmin 5”7] — Hz|3 + 7|Tz|s (¢1-analysis)
zERn
Application to sparse analysis with UDWT r=A"Y’W

g = (Id, + yH"H) (3" + df + vHy)

2 = Soft-T(#* + df, 15)

= 1d, + WW) (& —df + WP - db))
2k+1 _ Wi'k-H
L = gk gkl gkl

dlz+1 _ dlzc o Zk+1 + 2k+1

Tight-frame: W*W =1d,
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Non-smooth optimization

* . 1 .
2" € argmin 5”7] — Hz|3 + 7|Tz|s (¢1-analysis)
zERn
Application to sparse analysis with UDWT r=A"Y’W

g = (Id, + yH"H) (3" + df + vHy)

2 = Soft-T(#* + df, 15)

FH = %(xk“ _ gk W = @)

k41 = ATl
P — Wkt

k+1 k k+1 | ~k+1
ditt = gF — g gt

dlz+1 _ dlzc o Zk+1 + 2k+1

Tight-frame: W*W =1d,

117



Sparse analysis — Results

Deconvolution with UDWT (5 levels, Db2)

(a) Blurry image y (noise o = 2) (b) Synthesis (FISTA) (c) Analysis (FADMM)
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Sparse analysis — Results

Synthesis

Analysis

(a) 1 level (b) 2 level (c) 3 level (d) 4 level (e) 5 level

Analysis allows for less decomposition levels.
= leads to faster algorithms.

119



(a) Noisy (o = 40) (b) Analysis UDWT(4) (c) +block (orien.+col.) (d) Difference

® As for TV, group coefficients across orientations/color using ¢21 norms:
IT2]2,1
® The soft-thresholding becomes the group soft-thresholding:

zi—*y";ﬁ if Jzil2 >

[PrOX’Y”‘”Z,l (Z)L 9 o otherwise
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Shrinkage, Sparsity and Wavelets — What’s next?

Reminder from last class:

Modeling the distribution of images is complex (large degree of freedom).
Applying LMMSE on patches — increase performance

Next class:

What if we use sparse priors, not for the distribution of images,
but for the distribution of patches?
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Shrinkage, Sparsity and Wavelets — Further reading

For further reading

® Donoho & Johnstone (1994); Moulin & Liu (1999); Donoho and Elad (2003);
Gribonval and Nielsen (2003); Candés and Tao (2005); Zhang (2008); Candes
and Romberg (2007).

® Book: Statistical Learning with Sparsity (Hastie, Tibshirani, Wainwright, 2015).

® Warblet/Chirplet (Mann, Mihovilovic et al., 1991-1992), Curvelet (Candés &
Donoho, 2000), Noiselet (Coifman, 2001), Contourlet (Do & Vetterli, 2002),
Ridgelet (Do & Vetterli, 2003), Shearlets (Kanghui et al., 2005), Bandelet (Le
Pennec, Peyré, Mallat, 2005), Empirical wavelets (Gilles, 2013).

® Book: A wavelet tour of signal processing (Mallat, 2008)

® Douglas-Rachford splitting (Combettes & Pesquet, 2007), Split Bregman
(Goldstein & Osher, 2009), Primal-Dual (Chambolle & Pock, 2011), Generalized
FB (Raguet et al., 2013), Condat algorithm (2014).

® Book: Convex Optimization (Boyd, 2004).
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Questions?

Next class: Patch models and dictionary learning

Sources, images courtesy and acknowledgment

L. Condat
J. Salmon

Wikipedia

A. Horodniceanu

G. Peyré
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