
ECE 285

Image and video restoration

Chapter VI – Sparsity, shrinkage and wavelets

Charles Deledalle

June 7, 2019

1

Motivations

(a) y = x+ w (b) z = F y (c)
λ2i

λ2
i
+σ2

(d) ẑi=
λ2i

λ2
i
+σ2

zi (e) x̂ = F−1ẑ

Wiener filter (LMMSE in the Fourier domain)

• Assume Fourier coefficients to be decorrelated (white),

• Modulate frequencies based on the mean power spectral density λ2
i .

Limits

• Linear: no adaptation to the content ⇒

{
Unable to preserve edges,

Blurry solutions.

2

Motivations

Facts and consequences

• Assume Fourier coefficients to be decorrelated (white)

• Removing Gaussian noise ⇒ need to be adaptive ⇒ Non linear

• Assuming Gaussian noise + Gaussian prior ⇒ Linear

Deductive reasoning

Fourier coefficients of clean images are not Gaussian distributed

How are Fourier coefficients distributed?

3

Motivations – Distribution of Fourier coefficients

How are Fourier coefficients distributed?

1. Perform whitening with DFT

Var[x] = L = EΛE∗ with E = 1√
n
F

diag(Λ) = (λ2
1, . . . , λ

2
n) = n−1MPSD

4

Motivations – Distribution of Fourier coefficients

How are Fourier coefficients distributed?

2. Look at the histogram

• The histogram of η has a symmetric bell shape around 0.

• It has a peak at 0 (a large number of Fourier coefficients are zero).

• It has large/heavy tails (many coefficients are “outliers”/abnormal).

(a) x (b) Whitening η of x (c) Histogram of η

5

Motivations – Distribution of Fourier coefficients

How are Fourier coefficients distributed?

3. Look for the distribution that best fits (in log scale)

• Gaussian: bell shape
√

, peak ×, tail ×
• Laplacian: bell shape ×, peak

√
, tail
√

• Student: bell shape
√

, peak ×, tail
√

(heavier)

• Others: alpha stables and generalized Gaussian distributions

(a) Whitening η of x (b) Histogram of η (c) Log-histogram of η

6

Motivations – Distribution of Fourier coefficients

Model expression (zero mean, variance = 1)

• Gaussian: bell shape
√

, peak ×, tail ×

p(ηi) =
1√
2π

exp

(
−η

2
i

2

)
• Laplacian: bell shape ×, peak

√
, tail
√

p(ηi) =
1√
2

exp
(
−
√

2|ηi|
)

• Student: bell shape
√

, peak ×, tail
√

(heavier)

p(ηi) =
1

Z

(
1

(2r − 2) + η2
i

)r+1/2

(Z normalization constant, r > 1 controls the tails)

How do they look in multiple-dimensions?

7

Motivations – Distribution of Fourier coefficients

• Gaussian prior

{ • images are concentrated in an elliptical cluster,

• outliers are rare (images outside the cluster).

• Peaky & heavy tailed priors: shape between a diamond and a star.


• union of subspaces: most images lie in one of the branches of the star,

• sparsity: most of their coefficients ηi are zeros,

• robustness: outlier coefficients are frequent.

8

Shrinkage functions

Shrinkage functions

Consider the following Gaussian denoising problem

• Let y ∈ Rn and x ∈ Rp be two random vectors such that

y |x ∼ N (x, σ2Idn)

E[x] = 0 and Var[x] = L = EΛE∗

• Let η = Λ−1/2E∗x (whitening / decorrelation of x)

Goal: estimate x from y

assuming a non-Gaussian prior pη for η.

(such as Laplacian or Student)

9

Shrinkage functions

Bayesian shrinkage functions

• Assume ηi are also independent and identically distributed (iid).

• Then, the MMSE and MAP estimators both read as

x̂? = Eẑ︸︷︷︸
Come back

where ẑi = s(zi; λi, σ)︸ ︷︷ ︸
shrinkage

and z = E∗y︸︷︷︸
Change of basis

• The function zi 7→ s(zi; λi, σ) is called shrinkage function.

• Unlike the LMMSE, s will depend on the prior distribution of ηi.

• As for the LMMSE, the solution can be computed in the eigenspace.

• We say that the estimator is separable in the eigenspace (ex: Fourier).

10

Shrinkage functions

Remark

independence⇒ uncorrelation

¬uncorrelation⇒ ¬independence

correlation⇒ dependence

⇒

Whitening is a necessarily step

for independence but not a

sufficient one.

(Except in the Gaussian case)

How are the shrinkage functions defined for the MMSE and MAP?

11

Shrinkage functions

• Recall that the MMSE is the posterior mean

x̂? =

∫
Rn
xp(x|y) dx =

∫
Rn xp(y|x)p(x) dx∫
Rn p(y|x)p(x) dx

MMSE Shrinkage functions

• Under the previous assumptions

x̂? = Eẑ︸︷︷︸
Come back

where ẑi = s(zi; λi, σ)︸ ︷︷ ︸
shrinkage

and z = E∗y︸︷︷︸
Change of basis

with s(z; λ, σ) =

∫
R z̃ exp

(
− (z−z̃)2

2σ2

)
pη
(
z̃
λ

)
dz̃∫

R exp
(
− (z−z̃)2

2σ2

)
pη
(
z̃
λ

)
dz̃

where pη is the prior distribution on the entries of η.

• Separability: n dimensional optimization −→ n × 1d integrations.

12

Shrinkage functions

• Recall that the MAP is the optimization problem

x̂? ∈ argmax
x∈Rn

p(x|y) = argmin
x∈Rn

[− log p(y|x)− log p(x)]

MAP Shrinkage functions

• Under the previous assumptions

x̂? = Eẑ︸︷︷︸
Come back

where ẑi = s(zi; λi, σ)︸ ︷︷ ︸
shrinkage

and z = E∗y︸︷︷︸
Change of basis

with s(z; λ, σ) = argmin
z̃∈R

[
(z − z̃)2

2σ2
− log pη

(
z̃

λ

)]
where pη is the prior distribution on the entries of η.

• Separability: n dimensional integration −→ n × 1d optimisations.

13

Shrinkage functions

Example (Gaussian noise + Gaussian prior)

• MMSE Shrinkage

s(z; λ, σ) =

∫
R z̃ exp

(
− (z−z̃)2

2σ2 − z̃2

2λ2

)
dz̃∫

R exp
(
− (z−z̃)2

2σ2 − z̃2

2λ2

)
dz̃

=
λ2

λ2 + σ2
z

• MAP Shrinkage

s(z; λ, σ) = argmin
z̃∈R

[
(z − z̃)2

2σ2
+

z̃2

2λ2

]
=

λ2

λ2 + σ2
z

• Gaussian prior: MAP = MMSE = Linear shrinkage.

• We retrieve the LMMSE as expected.

14

Shrinkage functions

Gaussian noise + Gaussian prior

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

SNR = λ/σ = 4 λ/σ = 1 λ/σ = 1/4
15

Posterior mean – Shrinkage functions – Examples

Example (Gaussian noise + Laplacian prior)

• MMSE Shrinkage

s(z; λ, σ) =

∫
z̃ exp

(
− (z−z̃)2

2σ2 −
√

2|z̃|
λ

)
dz̃∫

exp
(
− (z−z̃)2

2σ2 −
√

2|z̃|
λ

)
dz̃

= z −
γ
(

erf
(
z−γ√

2σ

)
− exp

(
2γz
σ2

)
erfc

(
γ+z√

2σ

)
+ 1
)

erf
(
z−γ√

2σ

)
+ exp

(
2γz
σ2

)
erfc

(
γ+z√

2σ

)
+ 1

, γ =

√
2σ2

λ

• MAP Shrinkage (soft-thresholding)

s(z; λ, σ) = argmin
z̃∈R

[
(z − z̃)2

2σ2
+

√
2|z̃|
λ

]
=


0 if |z| < γ

z − γ if z > γ

z + γ if z < −γ︸ ︷︷ ︸
Soft-T(z,γ)

Non-gaussian prior: MAP 6= MMSE → Non-linear shrinkage.
16

Shrinkage functions

Gaussian noise + Laplacian prior

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

SNR = λ/σ = 4 λ/σ = 1 λ/σ = 1/4
17

Posterior mean – Shrinkage functions – Examples

Example (Gaussian noise + Student prior)

• MMSE Shrinkage

No simple expression, requires 1d numerical integration

• MAP Shrinkage

No simple expression, requires 1d numerical optimization

For efficiency, the 1d functions

can be evaluated offline and stored in a look-up-table.

18

Shrinkage functions

Gaussian noise + Student prior

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

SNR = λ/σ = 4 λ/σ = 1 λ/σ = 1/4
19

Posterior mean – Shrinkage functions – Examples

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

SNR = λ/σ = 4 λ/σ = 1/2 λ/σ = 1/2

• Coefficients are shrunk towards zero • Signs are preserved

• Non-Gaussian priors leads to non-linear filtering:

• sparsity: small coefficients are shrunk (likely due to noise)
• robustness: large coefficients are preserved (likely encoding signal)

• Larger SNR = λ
σ
⇒ shrinkage becomes close to identity.

20

Posterior mean – Shrinkage functions – Examples

Interpretation

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

Sparsity: zero for small values.

Robustness: remain close to the identity for large values.

Transition: bias/variance tradeoff.

Can we design our own shrinkage according to what we want?

21

Shrinkage functions

Shrinkage functions (a.k.a, thresholding functions)

• Pick a shrinkage function s satisfying

• Shrink: |s(z)| 6 |z| (non-expansive)

• Preserve sign: z · s(z) > 0

• Kill low SNR: lim
λ
σ
→0

s(z; λ, σ) = 0

• Keep high SNR: lim
λ
σ
→∞

s(z; λ, σ) = z

• Increasing: z1 6 z2 ⇔ s(z1) 6 s(z2)

• Beyond Bayesian: No need to relate s to a prior distribution pη.

22

Shrinkage functions

A few examples (among many others)

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

Hard-thresholding MCP SCAD

• Though not necessarily related to a prior distribution,

• Often related to a penalized least square problem, ex:

Hard-T(z) = argmin
z̃∈R

[
(z − z̃)2 + τ21{z̃ 6=0}

]
=

{
0 if |z| < τ

z otherwise

• Hard-thresholding: similar behavior to Student’s shrinkage.

23

Shrinkage functions

Link with penalized least square (1/2)

• D = L1/2 = EΛ1/2 is an orthogonal dictionary of n atoms/words

D = (d1, d2, . . . , dn) with ||di|| = λi and 〈di, dj〉 = 0 (for i 6= j)

• Goal: Look for the n coefficients ηi, such that x̂ close to y

x̂ = Dη =

n∑
i=1

ηidi = “linear comb. of the orthogonal atoms di of D”

• Choosing ηi =
〈

di
||di||2

, y
〉

, i.e., η = Λ−1/2E∗y, is optimal:

x̂ = y

but, it also reconstructs the noise component.

• Idea: penalize the coeffs to prevent from reconstructing the noise.

24

Shrinkage functions

Link with penalized least square (2/2)

• Penalization on the coefficients controls shrinkage and sparsity:

• 1

2
||y −Dη||22 +

τ2

2
||η||22 ⇒ ẑi =

λ2
i

λ2
i + τ2

zi

• 1

2
||y −Dη||22 + τ ||η||1 ⇒ ẑi = Soft-T (zi, γi) with γi =

τ

λi

• 1

2
||y −Dη||22 +

τ2

2
||η||0 ⇒ ẑi = Hard-T (zi, γi) with γi =

τ

λi

`0 pseudo-norm: ||η||0 = lim
p→0

(
n∑
i=1

ηpi

)1/p

= “# of non-zero coefficients”

Sparsity: ||η||0 small compared to n

25

Posterior mean – Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x (b) y = x+ w

(c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

sig = 20

I y = x + sig * np.random.randn(x.shape)

n1, n2 = y.shape[:2]

n = n1 * n2

lbd = np.sqrt(prior_mpsd(n1, n2) / n)

z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)

zhat = shrink(z, lbd, sig)

xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)

z = F y/
√
n

ẑi = s(zi; λi, σ)

x̂ =
√
nF−1ẑ

26

Posterior mean – Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x (b) λ

(c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

sig = 20

y = x + sig * np.random.randn(x.shape)

n1, n2 = y.shape[:2]

n = n1 * n2

I lbd = np.sqrt(prior_mpsd(n1, n2) / n)

z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)

zhat = shrink(z, lbd, sig)

xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)

z = F y/
√
n

ẑi = s(zi; λi, σ)

x̂ =
√
nF−1ẑ

26

Posterior mean – Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x (b) z

(c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

sig = 20

y = x + sig * np.random.randn(x.shape)

n1, n2 = y.shape[:2]

n = n1 * n2

lbd = np.sqrt(prior_mpsd(n1, n2) / n)

I z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)

zhat = shrink(z, lbd, sig)

xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)

z = F y/
√
n

ẑi = s(zi; λi, σ)

x̂ =
√
nF−1ẑ

26

Posterior mean – Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x (b) z (c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

sig = 20

y = x + sig * np.random.randn(x.shape)

n1, n2 = y.shape[:2]

n = n1 * n2

lbd = np.sqrt(prior_mpsd(n1, n2) / n)

z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)

I zhat = shrink(z, lbd, sig)

xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)

z = F y/
√
n

ẑi = s(zi; λi, σ)

x̂ =
√
nF−1ẑ

26

Posterior mean – Shrinkage in the Fourier domain

Shrinkage in the discrete Fourier domain

(a) x (b) y = x+ w (c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

sig = 20

y = x + sig * np.random.randn(x.shape)

n1, n2 = y.shape[:2]

n = n1 * n2

lbd = np.sqrt(prior_mpsd(n1, n2) / n)

z = nf.fft2(y, axes=(0, 1)) / np.sqrt(n)

zhat = shrink(z, lbd, sig)

I xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) * np.sqrt(n)

z = F y/
√
n

ẑi = s(zi; λi, σ)

x̂ =
√
nF−1ẑ

26

Shrinkage functions – Fourier domain – Results

(a) x (b) y (σ = 20) (c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

Bias ←−−−−−−−−−−−−−−−→ Variance
27

Shrinkage functions – Fourier domain – Results

(a) x (b) y (σ = 40) (c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

Bias ←−−−−−−−−−−−−−−−→ Variance
27

Shrinkage functions – Fourier domain – Results

(a) x (b) y (σ = 60) (c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

Bias ←−−−−−−−−−−−−−−−→ Variance
27

Shrinkage functions – Fourier domain – Results

(a) x (b) y (σ = 120) (c) Linear/Wiener
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

Bias ←−−−−−−−−−−−−−−−→ Variance
27

Posterior mean – Limits of shrinkage in the Fourier domain

Limits of shrinkage in the discrete Fourier domain

(a) x (b) y convolution kernels︷ ︸︸ ︷

(c) Linear
(=Gaussian)

(d) Soft-T
(=Laplacian)

(e) Hard-T
(≈Student)

• Linear shrinkage (Wiener)

⇒ Non-adaptive,

• Non-linear shrinkage

⇒ Adaptive convolution,

• Adapts to the frequency content,

• but not to the spatial content.

ẑi = s(zi; τ, σ) =
s(zi; τ, σ)

zi
× zi︸ ︷︷ ︸

element-wise product

⇔ x̂ = ν(y) ∗ y︸ ︷︷ ︸
spatial average

adapted to the spectrum of y.

28

Motivations

Consequences

• Modulating Fourier coefficients ⇒ Non spatially adaptive

• Assuming Fourier coefficients to be white+sparse ⇒ Shrinkage in Fourier

Deductive reasoning

Need another representation for sparsifying clean images

E 6= 1√
n


×n


︸ ︷︷ ︸

DFT: F

←−−−− Columns were the Fourier atoms

What transform can make signal white and sparse and

captures both spatial and spectral contents?

29

Wavelet transforms

Introduction to wavelets – Haar (1d case) [Alfréd Haar (1909)]

Id =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 and F =


1 1 1 1

1 e−2πi1/4 e−2πi2/4 e−2πi3/4

1 e−2πi2/4 e−2πi4/4 e−2πi6/4

1 e−2πi3/4 e−2πi6/4 e−2πi9/4


30

Introduction to wavelets – Haar (1d case) [Alfréd Haar (1909)]

H1st =
1√
2


1 1 0 0

0 0 1 1

1 −1 0 0

0 0 1 −1

 and H2nd =


1/2 1 1 1 1
1/2 1 1 −1 −1

1/
√

2 1 −1 0 0
1/
√

2 0 0 1 −1


31

Introduction to wavelets – Haar (2d case)

(a) H1st (4× 4 image) (b) x (c) H1stx

2d Haar representation

4 sub-bands


• Coarse sub-band

• Vertical detailed sub-band

• Horizontal detailed sub-band

• Diagonal detailed sub-band

32

Introduction to wavelets – Haar (2d case)

(a) H1st (4× 4 image) (b) x (c) H2ndx

Multi-scale 2d Haar representation

• Repeat recursively J times

• Dyadic decomposition

• Multi-scale representation

• Related to scale spaces

32

Introduction to wavelets – Haar (2d case)

(a) H1st (4× 4 image) (b) x (c) H3rdx

Multi-scale 2d Haar representation

• Repeat recursively J times

• Dyadic decomposition

• Multi-scale representation

• Related to scale spaces

33

Introduction to wavelets – Haar (2d case)

(a) H1st (4× 4 image) (b) x (c) H4thx

Multi-scale 2d Haar representation

• Repeat recursively J times

• Dyadic decomposition

• Multi-scale representation

• Related to scale spaces

33

Introduction to wavelets – Haar transform - Filter bank

34

Introduction to wavelets – Haar transform - Separability

Properties of the 2d Haar transform

• Separable: 1d Haar transforms in horizontal and next vertical direction

• First: perform a low pass and high pass filtering

• Next: perform decimation by a factor of 2

Can we choose other low and high pass filters

to get a better transform?

35

Discrete wavelets

Discrete wavelet transform (DWT) (1/3) (1d and n even)

• Let h ∈ Rn (with periodical boundary conditions) satisfying

n−1∑
i=0

hi = 0

n−1∑
i=0

h2
i = 1

and
n−1∑
i=0

hihi+2k = 0 for all integer k 6= 0

Example (Haar as a particular case)

h =
1√
2

(0 . . . 0 − 1 + 1 0 . . . 0)

36

Discrete wavelets

Discrete wavelet transform (DWT) (2/3) (1d and n even)

• Define the high and low pass filters H : Rn → Rn and G : Rn → Rn as

(Hx)k = (h ∗ x)k =

n−1∑
i=0

hixk−i

(Gx)k = (g ∗ x)k =

n−1∑
i=0

gixk−i where gi = (−1)ihn−1−i

• Note: necessarily
n−1∑
i=0

gi =
√

2

Example (Haar as a particular case)

h =
1√
2

(0 . . . 0 − 1 + 1 0 . . . 0)

g =
1√
2

(0 . . . 0 + 1 + 1 0 . . . 0)

37

Discrete wavelets

• Define the decimation by 2 of a matrix M ∈ Rn×n as

M↓2 = “M[::2, :]” ∈ Rn/2×n

i.e., the matrix obtained by removing every two rows.

• M↓2 x: apply M to x and next remove every two entries.

Discrete wavelet transform (DWT) (3/3) (1d and n even)

Let W =

(
G↓2
H ↓2

)
∈ Rn×n

Then


• x 7→Wx: orthonormal discrete wavelet transform,

• Columns of W : orthonormal discrete wavelet basis,

• z = Wx: wavelet coefficients of x.

38

Multi-scale discrete wavelets

Multi-scale DWT (1d and n multiple of 2J) [Mallat, 1989]

Defined recursively as W J-th =

(
W (J-1)-th O

0 Id

)
W

39

Multi-scale discrete wavelets

Implementation of 2D DWT (n1 and n2 multiple of 2J)

def dwt(x, J, h, g): # 2d and multi-scale

if J == 0:

return x

n1, n2 = x.shape[:2]

m1, m2 = (int(n1 / 2), int(n2 / 2))

z = dwt1d(x, h, g)

z = flip(dwt1d(flip(z), h, g))

z[:m1, :m2] = dwt(z[:m1, :m2], J - 1, h, g)

return z

def dwt1d(x, h, g): # 1d and 1scale

coarse = convolve(x, g)

detail = convolve(x, h)

z = np.concatenate((coarse[::2, :], detail[::2, :]), axis=0)

return z

Use separability

40

Multi-scale discrete wavelets

Multi-scale Inverse DWT (1d and n multiple of 2J)

Defined recursively as (W J-th)−1 = W−1

(
(W (J-1)-th)−1 O

0 Id

)

where W−1 = W ∗ =
(
G∗ ↑2 H∗ ↑2

)
∈ Rn×n

and M↑2: remove every two columns.

M↑2 x : insert 0 every two entries in x and next apply M .

41

Multi-scale discrete wavelets

Implementation of 2D IDWT (n1 and n2 multiple of 2J)

def idwt(z, J, h, g): # 2d and multi-scale

if J == 0:

return z

n1, n2 = z.shape[:2]

m1, m2 = (int(n1 / 2), int(n2 / 2))

x = z.copy()

x[:m1, :m2] = idwt(x[:m1, :m2], J - 1, h, g)

x = flip(idwt1d(flip(x), h, g))

x = idwt1d(x, h, g)

return x

def idwt1d(z, h, g): # 1d and 1scale

n1 = z.shape[0]

m1 = int(n1 / 2)

coarse, detail = np.zeros(z.shape), np.zeros(z.shape)

coarse[::2, :], detail[::2, :] = z[:m1, :], z[m1:, :]

x = convolve(coarse, g[::-1]) + convolve(detail, h[::-1])

return x

Use that its orthonormal then W−1 = W ∗

42

Discrete wavelets – Limited support

Discrete wavelet with limited support

• Consider a high pass filter with finite support of size m = 2p (even).
For instance for m = 4

H =



h2 h3 0 . . . 0 h0 h1

h0 h1 h2 h3 0 . . . 0

0 h0 h1 h2 h3 0 . . .

. . .

0 . . . 0 h0 h1 h2 h3

h2 h3 0 . . . 0 h0 h1


• Then h defines a wavelet transform if it satisfies the three conditions∑

hi = 0 and
∑

h2
i = 1 and

∑
hihi+2k = 0 for k = 1 to p− 1

• This system has 2p unknowns and 1 + p independent equations.

• If p = 1, 2p = 1 + p, this implies that the solution is unique (Haar).

• Otherwise, one has p− 1 degrees of freedom.
43

Discrete wavelets – Daubechies’ wavelets

Daubechies’ wavelets (1988)

• Daubechies suggests adding the p− 1 constraints

2p−1∑
i=0

iqhi = 0 for q = 1 to p− 1 (vanishing q-order moments)

• For p = 2, the (orthonormal) Daubechies’ wavelets are defined as
h2

0 + h2
1 + h2

2 + h2
3 = 1

h0 + h1 + h2 + h3 = 0

h0h2 + h1h3 = 0

h1 + 2h2 + 3h3 = 0

⇔ h = ± 1√
2


1+
√

3
4

3+
√

3
4

3−
√

3
4

1−
√

3
4


• The corresponding DWT is referred to as Daubechies-2 (or Db2).

As for the Fourier transform, there also exists a continuous version.

44

Continuous wavelets

Continuous wavelet transform (CWT) (1d)

• Continuum of locations t ∈ R and scales a > 0,

• Continuous wavelet transform of x : R→ R

c(a, t)︸ ︷︷ ︸
wavelet coefficient

=

∫ +∞

−∞
ψ∗a,t

(
t′
)
x(t′) dt′ = 〈 x︸︷︷︸

signal

, ψa,t︸︷︷︸
wavelet

〉

where ∗ is the complex conjugate.

• ψa,t: daughter wavelets, translated and scaled versions of Ψ

ψa,t(t
′) =

1√
a

Ψ

(
t′ − t
a

)
• Ψ: the mother wavelets satisfying∫ +∞

−∞
Ψ(t) dt = 0 and

∫ +∞

−∞
|Ψ(t)|2 dt = 1 <∞

(zero-mean) (unit-norm / square-integrable)

45

Continuous wavelets

Inverse CWT (1d)

• The inverse continuous wavelet transform is given by

x(t) =
1

CΨ

∫ +∞

−∞

∫ +∞

0

1

|a|2 c(a, t
′)ψa,t

(
t′
)

da dt′

with CΨ =

∫ +∞

0

|Ψ̂(u)|2

u
du where Ψ̂ is the Fourier transform of Ψ.

Relation between CWT/DWT (1d)

• The DWT can be seen as the discretization of the CWT

• Diadic discretization in scale: a = 1, 2, 4, . . . , 2J

• Uniform discretization in time at scale j with step 2j : t = 1:2j :n

46

Continuous wavelets

Twin-scale relation (1d)

• The CWT is orthogonal (inverse = adjoint), if and only if Ψ satisfies

Ψ(t) =
√

2

m−1∑
i=0

hiΦ(2t− i) and Φ(t) =
√

2

m−1∑
i=0

giΦ(2t− i)

where h and g are high- and low-pass filters defining a DWT.

• Φ is called father wavelet or scaling function.

• Note: potentially m =∞.

Twin-scale relation: allows to define a CWT from DWT and vice-versa.

The CWT may not have a closed form (approximated by the cascade algorithm)

47

Continuous and discrete wavelets
H

aa
r/

D
b

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Father wavelet

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Mother wavelet

-1

-0.5

0

0.5

1
Low pass filter

-1 0 1 2

-1

-0.5

0

0.5

1
High pass filter

-1 0 1 2

Popular wavelets are:
Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);

Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990);

Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.

Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets).

Two filters for the direct, and two others for the inverse.

48

Continuous and discrete wavelets
D

b
2

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Father wavelet

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Mother wavelet

-1

-0.5

0

0.5

1
Low pass filter

-1 0 1 2 3 4

-1

-0.5

0

0.5

1
High pass filter

-1 0 1 2 3 4

Popular wavelets are:
Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);

Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990);

Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.

Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets).

Two filters for the direct, and two others for the inverse.

48

Continuous and discrete wavelets
D

b
4

-2 0 2 4

-1

-0.5

0

0.5

1

Father wavelet

-4 -2 0 2 4

-1

-0.5

0

0.5

1

Mother wavelet

-1

-0.5

0

0.5

1
Low pass filter

0 2 4 6 8

-1

-0.5

0

0.5

1
High pass filter

0 2 4 6 8

Popular wavelets are:
Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);

Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990);

Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.

Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets).

Two filters for the direct, and two others for the inverse.

48

Continuous and discrete wavelets
D

b
8

0 2 4 6 8

-1

-0.5

0

0.5

1

Father wavelet

-5 0 5

-1

-0.5

0

0.5

1

Mother wavelet

-1

-0.5

0

0.5

1
Low pass filter

0 5 10 15

-1

-0.5

0

0.5

1
High pass filter

0 5 10 15

Popular wavelets are:
Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);

Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990);

Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.

Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets).

Two filters for the direct, and two others for the inverse.

48

Continuous and discrete wavelets
M

ey
er

-5 0 5

-1

-0.5

0

0.5

1

Father wavelet

-5 0 5

-1

-0.5

0

0.5

1

Mother wavelet

-1

-0.5

0

0.5

1
Low pass filter

0 20 40 60

-1

-0.5

0

0.5

1
High pass filter

0 20 40 60

Popular wavelets are:
Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);

Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990);

Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.

Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets).

Two filters for the direct, and two others for the inverse.

48

Continuous and discrete wavelets
C

o
if

4

-2 0 2 4 6 8

-1

-0.5

0

0.5

1

Father wavelet

-5 0 5

-1

-0.5

0

0.5

1

Mother wavelet

-1

-0.5

0

0.5

1
Low pass filter

0 5 10 15 20

-1

-0.5

0

0.5

1
High pass filter

0 5 10 15 20

Popular wavelets are:
Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);

Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990);

Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.

Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets).

Two filters for the direct, and two others for the inverse.

48

Continuous and discrete wavelets
S

ym
4

-4 -2 0 2 4

-1

-0.5

0

0.5

1

Father wavelet

-4 -2 0 2 4

-1

-0.5

0

0.5

1

Mother wavelet

-1

-0.5

0

0.5

1
Low pass filter

0 2 4 6 8

-1

-0.5

0

0.5

1
High pass filter

0 2 4 6 8

Popular wavelets are:
Haar (1909); Gabor wavelet (1946); Mexican hat/Marr wavelet (1980);

Morlet wavelet (1984); Daubechies (1988); Meyer wavelet (1990);

Binomial quadrature mirror filter (1990); Coiflets (1991); Symlets (1992).

Some classical wavelet transforms are not orthogonal.

Bi-orthogonal: Non orthogonal but invertible (ex: for symmetric wavelets).

Two filters for the direct, and two others for the inverse.

48

Wavelets and sparsity

Wavelets perform image compression

• Haar encodes constant signals with one coefficient,

• Db-p encodes (p-1)-order polynomials with p coefficients.

Consequences:

• Polynomial/Smooth signals are encoded with very few coefficients,

• Coarse coefficients encode the smooth underlying signal,

• Detailed coefficients encode non-smooth content of the signal,

• Typical signals are concentrated on few coefficients,

• The remaining coefficients capture only noise components.

⇒ Heavy tailed distribution with a peak at zero,

i.e., wavelets favor sparsity.

49

Wavelets and sparsity

Wavelets perform image compression

• Haar encodes constant signals with one coefficient,

• Db-p encodes (p-1)-order polynomials with p coefficients.

Consequences:

• Polynomial/Smooth signals are encoded with very few coefficients,

• Coarse coefficients encode the smooth underlying signal,

• Detailed coefficients encode non-smooth content of the signal,

• Typical signals are concentrated on few coefficients,

• The remaining coefficients capture only noise components.

⇒ Heavy tailed distribution with a peak at zero,

i.e., wavelets favor sparsity.

49

Wavelets as a sparsifying transform

F
o

u
ri

er

(a) x (b) Fx (c) λ (d) (Fx)i/λi

W
av

el
et

s

(e) x (f) Wx (g) λ (h) (Wx)i/λi

Fourier (ui, vi freq. of component i)

• E∗ = F /
√
n

• λ2
i = n−1MPSD and ∞ if i = 0

• Arbitrary DC component

Wavelets (ji scale of component i)

• E∗ = W

• λi = α2ji−1 and ∞ if ji = J

• Arbitrary coarse component

50

Wavelets as a sparsifying transform

F
o

u
ri

er

(a) x (b) Fx (c) λ (d) (Fx)i/λi

W
av

el
et

s

(e) x (f) Wx (g) λ (h) (Wx)i/λi

Fourier (ui, vi freq. of component i)

• E∗ = F /
√
n

• λ2
i = n−1MPSD and ∞ if i = 0

• Arbitrary DC component

Wavelets (ji scale of component i)

• E∗ = W

• λi = α2ji−1 and ∞ if ji = J

• Arbitrary coarse component

50

Distribution of wavelet coefficients

(a) x (b) ηi = (Wx)i/λi

(c) Histogram of η (d) Histogram of η
51

Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y

(b) z (Haar)

sig = 20

I y = x + sig * nr.randn(*x.shape)

z = im.dwt(y, 3, h, g)

zhat = shrink(z, lbd, sig)

xhat = im.idwt(zhat, 3, h, g)

z = W y

ẑi = s(zi; λi, σ)

x̂ = W−1ẑ

52

Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y (b) z (Haar)

sig = 20

y = x + sig * nr.randn(*x.shape)

I z = im.dwt(y, 3, h, g)

zhat = shrink(z, lbd, sig)

xhat = im.idwt(zhat, 3, h, g)

z = W y

ẑi = s(zi; λi, σ)

x̂ = W−1ẑ

52

Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y (b) ẑ (Haar+LMMSE)

sig = 20

y = x + sig * nr.randn(*x.shape)

z = im.dwt(y, 3, h, g)

I zhat = shrink(z, lbd, sig)

xhat = im.idwt(zhat, 3, h, g)

z = W y

ẑi = s(zi; λi, σ)

x̂ = W−1ẑ

52

Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y (b) ẑ (Haar+LMMSE) (c) x̂

sig = 20

y = x + sig * nr.randn(*x.shape)

z = im.dwt(y, 3, h, g)

zhat = shrink(z, lbd, sig)

I xhat = im.idwt(zhat, 3, h, g)

z = W y

ẑi = s(zi; λi, σ)

x̂ = W−1ẑ

52

Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y (b) ẑ (Daubechies+LMMSE) (c) x̂

sig = 20

y = x + sig * nr.randn(*x.shape)

z = im.dwt(y, 3, h, g)

zhat = shrink(z, lbd, sig)

I xhat = im.idwt(zhat, 3, h, g)

z = W y

ẑi = s(zi; λi, σ)

x̂ = W−1ẑ

52

Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y (b) ẑ (Daubechies+Soft-T) (c) x̂

sig = 20

y = x + sig * nr.randn(*x.shape)

z = im.dwt(y, 3, h, g)

zhat = shrink(z, lbd, sig)

I xhat = im.idwt(zhat, 3, h, g)

z = W y

ẑi = s(zi; λi, σ)

x̂ = W−1ẑ

52

Shrinkage in the wavelet domain

Shrinkage in the discrete wavelet domain

(a) y (b) ẑ (Daubechies+Hard-T) (c) x̂

sig = 20

y = x + sig * nr.randn(*x.shape)

z = im.dwt(y, 3, h, g)

zhat = shrink(z, lbd, sig)

I xhat = im.idwt(zhat, 3, h, g)

z = W y

ẑi = s(zi; λi, σ)

x̂ = W−1ẑ

52

Shrinkage in the wavelet domain

(a) y (σ = 20) (b) Db2+LMMSE (c) Db2+Soft-T (d) Db2+Hard-T (e) Haar+Hard-T

For large noise: Blocky effects and Ringing artifacts

53

Shrinkage in the wavelet domain

(a) y (σ = 40) (b) Db2+LMMSE (c) Db2+Soft-T (d) Db2+Hard-T (e) Haar+Hard-T

For large noise: Blocky effects and Ringing artifacts

53

Shrinkage in the wavelet domain

(a) y (σ = 60) (b) Db2+LMMSE (c) Db2+Soft-T (d) Db2+Hard-T (e) Haar+Hard-T

For large noise: Blocky effects and Ringing artifacts

53

Shrinkage in the wavelet domain

(a) y (σ = 120) (b) Db2+LMMSE (c) Db2+Soft-T (d) Db2+Hard-T (e) Haar+Hard-T

For large noise: Blocky effects and Ringing artifacts

53

Undecimated wavelet transforms

Limits of the discrete wavelet transform

• While Fourier shrinkage is translation invariant:

ψ(yτ) = ψ(y)τ where yτ (s) = y(s+ τ)

• Wavelet shrinkage is not translation invariant.

• This is due to the decimation step:

W =

(
G ↓2
H ↓2

)
∈ Rn×n where M ↓2 = “M[::2, :]”

• This explains the blocky artifacts that we observe.

54

Undecimated discrete wavelet transform (UDWT)

Figure 1 – Haar DWT

• Haar transform groups pixels by clusters of 4.

• Blocks are treated independently to each other.

• When similar neighbor blocks are shrunk

differently, it becomes clearly visible in the image.

• This arises all the more as the noise level is large.

What if we do not decimate?

⇒ UDWT, aka, stationary or translation-invariant wavelet transform.

55

Undecimated discrete wavelet transform (UDWT)

1-scale DWT

• For a 4× 4 image:

4× 4 coefficients.

• For n pixels: K = n coefficients.

1-scale UDWT

• For a 4× 4 image:

8× 8 coefficients.

• For n pixels: K = 4n coeffs.

What about multi-scale?
56

Undecimated discrete wavelet transform (UDWT)

A trous algorithm (with holes) (Holschneider et al., 1989)

Instead of decimating the coefficients at each scale j, upsample the filters

h and g by injecting 2j − 1 zeros between each entries.

57

Undecimated discrete wavelet transform (UDWT)

DWT: Mallat’s dyadic pyramidal multi-resolution scheme

UDWT: A trous algorithm – G:p: inject p zeros between each filter coeffs

Multi-scales: K = (1 + J(2d − 1))n coeffs (J : #scales, d = 2 for images)

58

Undecimated discrete wavelet transform (UDWT)

Implementation of 2D UDWT (A trous algorithm)

def udwt(x, J, h, g):

if J == 0:

return x[:, :, np.newaxis]

tmph = flip(convolve(flip(x), h)) / 2

tmpg = flip(convolve(flip(x), g)) / 2

detail = np.stack((convolve(tmpg, h),

convolve(tmph, g),

convolve(tmph, h)), axis=2)

coarse = convolve(tmpg, g)

h2 = interleave0(h)

g2 = interleave0(g)

z = np.concatenate((udwt(coarse, J - 1, h2, g2), detail), axis=2)

return z

Linear complexity.

Can be easily modified to reduce memory usage.

59

Undecimated discrete wavelet transform (UDWT)

(a) DWT (J=2) (b) UDWT Coarse Sc. (c) Detailed Scale #1 (d) Detailed Scale #2

(e) Detailed Scale #3 (f) Detailed Scale #4 (g) Detailed Scale #5 (h) Detailed Scale #6

What about its inverse transform?

60

Undecimated discrete wavelet transform (UDWT)

DWT – Wavelet basis – and inverse DWT

• The DWT W ∈ Rn×n has n columns and n rows.

• The n columns/rows of W are orthonormal.

• The inverse DWT is W−1 = W ∗.

• One-to-one relationship between an image and its wavelet coefficients.

UDWT – Redundant wavelet dictionary

• The UDWT W̄ ∈ RK×n has K = (1 + J(2d − 1))n rows and n columns.

• The rows of W̄ cannot be linearly independent: not a basis.

• They are said to form a redundant/overcomplete wavelet dictionary.

• Since W̄ is non square, it is not invertible.

Note: redundant dictionaries necessarily favor sparsity.

61

Undecimated discrete wavelet transform (UDWT)

Pseudo-inverse UDWT

• Nevertheless, the n columns are orthonormal, then: W̄ ∗ = W̄+

• It satisfies W̄+W̄ = Idn, but W̄W̄+ 6= IdK

• image
W̄−→ coefficients

W̄+

→ back to the original image,

• coefficients
W̄+

→ image
W̄→ not necessarily the same coefficients.

• Satisfies the Parseval equality〈
W̄x, W̄ y

〉
=
〈
x, W̄ ∗W̄ y

〉
=
〈
x, W̄+W̄ y

〉
= 〈x, y〉

• In the vocabulary of linear algebra: W̄ is called a tight-frame.

Consequence: an algorithm for W̄+ can be obtained.

62

Undecimated discrete wavelet transform (UDWT)

Implementation of 2D Inverse UDWT

def iudwt(z, J, h, g):

if J == 0:

return z[:, :, 0]

h2 = interleave0(h)

g2 = interleave0(g)

coarse = iudwt(z[:, :, :-3], J - 1, h2, g2)

tmpg = convolve(coarse, g[::-1]) + \

convolve(z[:, :, -3], h[::-1])

tmph = convolve(z[:, :, -2], g[::-1]) + \

convolve(z[:, :, -1], h[::-1])

x = (flip(convolve(flip(tmpg), g[::-1])) +

flip(convolve(flip(tmph), h[::-1]))) / 2

return x

Linear complexity again.

Can also be easily modified to reduce memory usage.

Can we be more efficient?

63

Multi-scale discrete wavelets

Filter bank

• The UDWT of x for subband k, x 7→ (Wx)k is

linear and translation invariant (LTI)

⇒ It’s a convolution.

• The UDWT is a filter bank:

a set of band-pass filters that separates

the input image into multiple components.

• Each filter can be represented by its frequential response.

• Direct and inverse transform: implementation in the Fourier domain.

64

Undecimated discrete wavelet transform (UDWT)
F

ilt
er

s
P

ro
d

u
ct

S
u

b
b

an
d

s

(a) Coarse 2 (b) Details 2 (c) Details 2 (d) Details 2 (e) Details 1 (f) Details 1 (g) Details 1

Haar with J = 2 levels of decomposition

65

Undecimated discrete wavelet transform (UDWT)
H

aa
r

D
b

2
D

b
4

D
b

8

(a) Coarse 2 (b) Details 2 (c) Details 2 (d) Details 2 (e) Details 1 (f) Details 1 (g) Details 1

Haar: band pass with side lobes. Db8: closer to ideal band pass.

66

Undecimated discrete wavelet transform (UDWT)

Db4 with J = 6 levels of decomposition

How to create such a filter bank?

67

Undecimated discrete wavelet transform (UDWT)

UDWT: Creation of the filter bank (offline)

def udwt_create_fb(n1, n2, J, h, g, ndim=3):

if J == 0:

return np.ones((n1, n2, 1, *[1] * (ndim - 2)))

h2 = interleave0(h)

g2 = interleave0(g)

fbrec = udwt_create_fb(n1, n2, J - 1, h2, g2, ndim=ndim)

gf1 = nf.fft(fftpad(g, n1), axis=0)

hf1 = nf.fft(fftpad(h, n1), axis=0)

gf2 = nf.fft(fftpad(g, n2), axis=0)

hf2 = nf.fft(fftpad(h, n2), axis=0)

fb = np.zeros((n1, n2, 4), dtype=np.complex128)

fb[:, :, 0] = np.outer(gf1, gf2) / 2

fb[:, :, 1] = np.outer(gf1, hf2) / 2

fb[:, :, 2] = np.outer(hf1, gf2) / 2

fb[:, :, 3] = np.outer(hf1, hf2) / 2

fb = fb.reshape(n1, n2, 4, *[1] * (ndim - 2))

fb = np.concatenate((fb[:, :, 0:1] * fbrec, fb[:, :, -3:]),

axis=2)

return fb

68

Undecimated discrete wavelet transform (UDWT)

UDWT: Direct transform using the filter bank (online)

def fb_apply(x, fb):

x = nf.fft2(x, axes=(0, 1))

z = fb * x[:, :, np.newaxis]

z = np.real(nf.ifft2(z, axes=(0, 1)))

return z

UDWT: Inverse transform using the filter bank (online)

def fb_adjoint(z, fb):

z = nf.fft2(z, axes=(0, 1))

x = (np.conj(fb) * z).sum(axis=2)

x = np.real(nf.ifft2(x, axes=(0, 1)))

return x

Much more efficient than previous implementation when J > 1

69

Reconstruction with the UDWT

Shrinkage with UDWT

• Consider a denoising problem y = x+ w with noise variance σ2.

• Shrink the K > n coefficients independently.

x̂? = W̄+ẑ︸ ︷︷ ︸
Pseudo-inverse

where ẑi = s(zi; λi, σi)︸ ︷︷ ︸
shrinkage

and z = W̄ y︸︷︷︸
Redundant representation

Rule of thumb for soft-thresholding:

• For the orthonormal DWT W : increase λi as
√

2
d(ji−1)

.

• For the tight-frame UDWT W̄ : increase λi as: 2d(ji−1/2).

(ji scale for coefficient i, d = 2 for images).

70

Reconstruction with the UDWT

(a) y (b) DWT(3)+Haar+HT (c) DWT(3)+Db2+HT

(d) UDWT(3)+Haar+HT

(e) UDWT(3)+Db2+HT

(f) UDWT(3)+Db8+HT

71

Reconstruction with the UDWT

(a) y (b) DWT(3)+Haar+HT (c) DWT(3)+Db2+HT

(d) UDWT(3)+Haar+HT (e) UDWT(3)+Db2+HT (f) UDWT(3)+Db8+HT
71

Reconstruction with the UDWT

(a) y (b) DWT(3)+Haar+HT (c) DWT(3)+Db2+HT

(d) UDWT(1)+Db2+HT (e) UDWT(3)+Db2+HT (f) UDWT(5)+Db2+HT
71

Reconstruction with the UDWT

(a) y (b) DWT(3)+Haar+HT (c) DWT(3)+Db2+HT

(d) UDWT(3)+Db2+Linear (e) UDWT(3)+Db2+HT (f) UDWT(3)+Db2+ST
71

Reconstruction with the UDWT

(a) y (σ = 20) (b) UDWT+Lin. (c) UDWT+HT (d) DWT+HT
72

Reconstruction with the UDWT

(a) y (σ = 40) (b) UDWT+Lin. (c) UDWT+HT (d) DWT+HT
72

Reconstruction with the UDWT

(a) y (σ = 60) (b) UDWT+Lin. (c) UDWT+HT (d) DWT+HT
72

Reconstruction with the UDWT

(a) y (σ = 120) (b) UDWT+Lin. (c) UDWT+HT (d) DWT+HT
72

Reconstruction with the UDWT

x̂? = W̄+ẑ︸ ︷︷ ︸
Pseudo-inverse

where ẑi = s(zi; λi, σi)︸ ︷︷ ︸
shrink K coefficients

and z = W̄ y︸︷︷︸
Redundant representation

Connection with Bayesian shrinkage?

• Since the rows of W̄ are linearly dependent,

the coefficients zi are necessarily correlated (non-white).

• Shrink the K > n coefficients independently,

even though they cannot be assumed independent.

• This estimator has no Bayesian interpretation,

it does not correspond to the MMSE or MAP.

How to use the UDWT in the Bayesian context?

73

Reconstruction with the UDWT

Bayesian analysis model

Whitening model: Consider η = Λ−1/2Wx (η coeffs)

such that E[η] = 0n and Var[η] = Idn

Analysis: images can be transformed to white coeffs.

B Non-sense when rows of W are redundant.

Bayesian synthesis model

Generative model: Consider x = W̄+Λ1/2η (η code)

such that E[η] = 0K and Var[η] = IdK

Synthesis: images can be generated from a white code.

, Always well-founded.

74

Reconstruction with the UDWT

Forward model: y = x+ w

Maximum a Posteriori for the Synthesis model

• Instead of looking for x, consider the MAP for the code η

η̂? ∈ argmax
η∈RK

p(η|y)

= argmin
η∈RK

[− log p(y|η)− log p(η)]

= argmin
η∈RK

[
1

2
||y − W̄+Λ1/2η||22 − log p(η)

]
• Once you get η̂?, generate the image x̂? as

x̂? = W̄+Λ1/2η̂?

What interpretation?

75

Reconstruction with the UDWT

Penalized least square with redundant dictionary

• Consider the redundant wavelet dictionary D = W̄+Λ1/2

D = (d1, d2, . . . , dK︸ ︷︷ ︸
linearly dependent atoms

), ||di|| = λi, K > n

• Goal: Look for a code η ∈ RK , such that x̂ close to y

x̂ = Dη =

K∑
i=1

ηidi = “linear comb. of the redundant atoms di of D”

• Since D is redundant, different codes η produce the same image x.

• Penalize independently each ηi to select a relevant one

η̂? ∈ argmin
η∈RK

[
1

2
||y − W̄+Λ1/2η||22 −

K∑
i=1

log p(ηi)

]

What choice for log p(ηi)?
76

Reconstruction with the UDWT

Penalized least square with redundant dictionary

• 1

2
||y −Dη||22 +

τ2

2
||η||22, ||η||22 =

∑
i η

2
i ← Ridge regression

• 1

2
||y −Dη||22 + τ ||η||1, ||η||1 =

∑
i |ηi| ← LASSO

• 1

2
||y −Dη||22 +

τ2

2
||η||0, ||η||0 =

∑
i 1{ηi 6=0} ← Sparse regression

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

2

3

4

5

When D is redundant, these problems are no longer separable.

They require large-scale optimization techniques.
77

Regularizations and optimization

Ridge regression

Ridge/Smooth regression

• Convex energy: E(η) = 1
2
||y −Dη||22 + τ2

2
||η||22

• Gradient: ∇E(η) = D∗(Dη − y) + τ2η

• Optimality conditions: η̂? = (D∗D + τ2IdK)−1D∗y

• For UDWT: this is an LTI filter ≡ convolution (non adaptive)

(a) y (b) Linear shrink (c) Ridge (d) Difference

Ridge 6≡ Linear shrinkage (except if D is orthogonal).

78

Sparse regression

Sparse regression / `0 regularization (1/3)

• Energy: E(η) = 1
2
||y −Dη||22 + τ2

2
||η||0

• Penalty: ||η||0 = #non zero elements in η

• Non-convex: 0.5 = 1
2
(||0||0 + ||1||0) < ||0.5||0 = 1

• Produces optimal sparse solutions adapted to the signal ,

• But, non-differentiable and discontinuous. /

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

2

3

4

5

79

Sparse regression

Sparse regression / `0 regularization (2/3)

• If D is orthogonal: solution given by the Hard-Thresholding.

• Otherwise, exact solution obtained by brute force:

• For all possible support I ⊆ {1, . . . ,K} (set of non-zero coefficients)
• Solve the least square estimation problem:

argmin
(ηi)i∈I

1

2
||y −

∑
i∈I

ηiai||22

• Pick the solution that minimizes E.

• NP-hard combinatorial problem:

#subsets =

K∑
k=0

(
K

k

)
= 2K

80

Sparse regression

Sparse regression / `0 regularization (3/3)

• Sub-optimal solutions can be obtained by greedy algorithms.

• Matching pursuit (MP): (Mallat, 1993)

1 Initialization: r ← y, η ← 0, k ← 0

2 Choose i maximizing |D∗r|i = | 〈di, r〉 |
3 Compute α = 〈r, di〉 /||di||22
4 Update r ← r − αdi
5 Update ηi = α

6 Update k ← k + 1

7 Back to step 2 while E(η) = 1
2
||r||22 + τ2

2
k decreases

• Lots of iterations: complexity O(kn), with k the sparsity of the solution.

• Each iteration requires to compute an UDWT.

• Extensions: OMP (Tropp & Gilbert, 2007), CoSaMP (Needel & Tropp, 2009)

81

Least Absolute Shrinkage and Selection Operator (LASSO)

Convex relaxation: Take the best of both worlds: sparsity and convexity

LASSO / `1 regularization (Tibshirani 1996)

• Convex energy: E(η) = 1
2
||y −Dη||22 + τ ||η||1

• Non-smooth penalty: ||η||1 =
∑K
i=1 |ηi|

• If D is orthogonal: solution given by the Soft-Thresholding.

• Produces also sparse solutions adapted to the signal ,

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

2

3

4

5

82

Least Absolute Shrinkage and Selection Operator

(a) Input (b) ST+UDWT (1s) (c) LASSO+UDWT (30s) (d) Difference

Though the solutions look alike, their codes η are very different.

83

Least Absolute Shrinkage and Selection Operator
In

p
u

t
S

T
+

U
D

W
T

L
A

S
S

O
+

U
D

W
T

(a) Image (b) Coarse 5 (c) Scale 5 (d) Scale 5 (e) Scale 5 (f) Scale 1 (g) Scale 1

The LASSO creates much sparser codes than ST only.

84

Least Absolute Shrinkage and Selection Operator

Why use the LASSO if shrinkage in the UDWT provides similar results?

• Shrinkage in the UDWT domain

can only be applied for denoising problems.

• The LASSO can be adapted to inverse-problems:

x̂? = Dη̂? with η̂? ∈ argmin
η∈RK

[
1

2
||y −HDη||22 + τ ||η||1

]

But it requires solving a non-smooth convex optimization problem.

Solution: use sub-differential and Fermat’s rule.

85

Non-smooth convex optimization

Definition (Sub-differential)

• Let f : Rn → R be a convex function, u ∈ Rn is a sub-gradient of f at

x∗, if for all x ∈ Rn

f(x) > f(x∗) + 〈u, x− x∗〉 .

• The sub-differential is the set of sub-gradients

∂f(x∗) = {u ∈ Rn : ∀x ∈ Rn, f(x) > f(x∗) + 〈u, x− x∗〉}.

If the sub-gradient is unique, f is differentiable and ∂f(x) = {∇f(x)}.
86

Non-smooth convex optimization

Definition (Sub-differential)

• Let f : Rn → R be a convex function, u ∈ Rn is a sub-gradient of f at

x∗, if for all x ∈ Rn

f(x) > f(x∗) + 〈u, x− x∗〉 .

• The sub-differential is the set of sub-gradients

∂f(x∗) = {u ∈ Rn : ∀x ∈ Rn, f(x) > f(x∗) + 〈u, x− x∗〉}.

If the sub-gradient is unique, f is differentiable and ∂f(x) = {∇f(x)}.
86

Non-smooth convex optimization

Definition (Sub-differential)

• Let f : Rn → R be a convex function, u ∈ Rn is a sub-gradient of f at

x∗, if for all x ∈ Rn

f(x) > f(x∗) + 〈u, x− x∗〉 .

• The sub-differential is the set of sub-gradients

∂f(x∗) = {u ∈ Rn : ∀x ∈ Rn, f(x) > f(x∗) + 〈u, x− x∗〉}.

If the sub-gradient is unique, f is differentiable and ∂f(x) = {∇f(x)}.
86

Non-smooth convex optimization

Definition (Sub-differential)

• Let f : Rn → R be a convex function, u ∈ Rn is a sub-gradient of f at

x∗, if for all x ∈ Rn

f(x) > f(x∗) + 〈u, x− x∗〉 .

• The sub-differential is the set of sub-gradients

∂f(x∗) = {u ∈ Rn : ∀x ∈ Rn, f(x) > f(x∗) + 〈u, x− x∗〉}.

If the sub-gradient is unique, f is differentiable and ∂f(x) = {∇f(x)}.
86

Non-smooth convex optimization

Theorem (Fermat’s rule)

Let f : Rn → R be a convex function, then

x∗ ∈ argmin
x∈Rn

f(x) ⇔ 0n ∈ ∂f(x∗)

If f is also differentiable, this corresponds to the standard rule ∇f(x∗) = 0n.

Minimizers are the only points with a horizontal tangent

87

Non-smooth convex optimization

Function (abs):

f :

R → R

x 7→ |x|

Sub-differential (sign)

∂f(x∗) =


{−1} if x∗ ∈ (−∞, 0)

{+1} if x∗ ∈ (0,∞)

[−1, 1] if x∗ = 0

88

Non-smooth convex optimization

Function (abs):

f :

R → R

x 7→ |x|

Sub-differential (sign)

∂f(x∗) =


{−1} if x∗ ∈ (−∞, 0)

{+1} if x∗ ∈ (0,∞)

[−1, 1] if x∗ = 0

88

Non-smooth convex optimization

Function (abs):

f :

R → R

x 7→ |x|

Sub-differential (sign)

∂f(x∗) =


{−1} if x∗ ∈ (−∞, 0)

{+1} if x∗ ∈ (0,∞)

[−1, 1] if x∗ = 0

88

Non-smooth convex optimization

Function (abs):

f :

R → R

x 7→ |x|

Sub-differential (sign)

∂f(x∗) =


{−1} if x∗ ∈ (−∞, 0)

{+1} if x∗ ∈ (0,∞)

[−1, 1] if x∗ = 0

88

Non-smooth convex optimization

Function (abs):

f :

R → R

x 7→ |x|

Sub-differential (sign)

∂f(x∗) =


{−1} if x∗ ∈ (−∞, 0)

{+1} if x∗ ∈ (0,∞)

[−1, 1] if x∗ = 0

88

Non-smooth convex optimization

Function (abs):

f :

R → R

x 7→ |x|

Sub-differential (sign)

∂f(x∗) =


{−1} if x∗ ∈ (−∞, 0)

{+1} if x∗ ∈ (0,∞)

[−1, 1] if x∗ = 0

88

Non-smooth convex optimization

Function (abs):

f :

R → R

x 7→ |x|

Sub-differential (sign)

∂f(x∗) =


{−1} if x∗ ∈ (−∞, 0)

{+1} if x∗ ∈ (0,∞)

[−1, 1] if x∗ = 0

88

Non-smooth convex optimization

Function (abs):

f :

R → R

x 7→ |x|

Sub-differential (sign)

∂f(x∗) =


{−1} if x∗ ∈ (−∞, 0)

{+1} if x∗ ∈ (0,∞)

[−1, 1] if x∗ = 0

88

Non-smooth convex optimization

Proximal operator

• Let f : Rn → R be a convex function (+ some technical conditions). The

proximal operator of f is

Proxf (x) = argmin
z∈Rn

1

2
||z − x||22 + f(z)

• Remark: this minimization problem always has a unique solution, so the

proximal operator is without ambiguity a function Rn → Rn.

• Always non-expansive:

||Proxf (x1)− Proxf (x2)|| 6 ||x1 − x2||

• Can be interpreted as a denoiser/shrinkage for the regularity f .

Property

Proxγf (x) = (Id + γ∂f)−1x

89

Non-smooth convex optimization

Proof.

argmin
z

1

2
||z − x||22 + γf(z) ⇔ 0 ∈ ∂

[
1

2
||z − x||22 + γf(z)

]
⇔ 0 ∈ ∂

[
1

2
||z − x||22

]
+ γ∂f(z)

⇔ 0 ∈ z − x+ γ∂f(z)

⇔ x ∈ z + γ∂f(z)

⇔ x ∈ (Id + γ∂f)(z)

⇔ z = (Id + γ∂f)−1x

Even though ∂f(x) is a set, the pre-image by Id + γ∂f is unique.

90

Non-smooth convex optimization

Soft-thresholding

Proxγ|.|(x) = argmin
z∈R

1

2
(z − x)2 + γ|z|

= (Id + γ∂|.|)−1x =


x− γ if x > γ

x+ γ if x < −γ
0 otherwise

91

Non-smooth convex optimization

Proximal operator of simple functions

Name f(x) Proxγf (x)

Indicator of

convex set C

{
0 if x ∈ C
∞ otherwise

ProjC(x)

Square 1
2
||x||22

x

1 + γ

Abs ||x||1 Soft-T(x, γ)

Euclidean ||x||2
(

1− γ

max(||x||2, γ)

)
x

Square+Affine 1
2
||Ax+ b||22 (Id + γA∗A)−1(x− γA∗b)

Separability

for x =
(
x1
x2

) g(x1) + h(x2)

(
Proxγg(x1)

Proxγh(x2)

)

More exhaustive list: http://proximity-operator.net
92

http://proximity-operator.net

Non-smooth convex optimization

Proximal minimization

• Let f : Rn → R be a convex function (+ some technical conditions).

Then, whatever the initialization x0 and γ > 0, the sequence

xk+1 = Proxγf (xk)

converges towards a global minimizer of f .

Proxγf (xk) = (Id + γ∂f)−1xk = argmin
z

1

2
||z − xk||22 + γf(z)

Compared to gradient descent

• No need to be differentiable,

• No need to have Lipschitz gradient,

• Works whatever the parameter γ,

• Requires to solve an optimization problem at each

step.

93

Non-smooth convex optimization

Gradient descent:

read xk on the x-axis and evaluate its image by the function x− γ∇F (x).

94

Non-smooth convex optimization

Proximal minimization:

Look at the set x+ γ∂F (x)

94

Non-smooth convex optimization

Proximal minimization:

read xk on the y-axis and evaluate its pre-image by x+ γ∇F (x).

95

Non-smooth convex optimization

Proximal minimization:

the larger γ the faster, but the inversion becomes harder (ill-conditioned).

95

Non-smooth convex optimization

Toy example

• Consider the smoothing regularization problem

F (x) =
1

2
||∇x||22,2

• Its sub-gradient is thus given by

∂F (x) = {∇F (x) = −∆x}

• The proximal minimization reads as

xk+1 = (Id + γ∂F)−1xk

= (Id− γ∆)−1xk

• This is exactly the implicit Euler scheme for the Heat equation.

96

Non-smooth convex optimization

Can we apply proximal minimization for the LASSO?

Proximal splitting methods

• The proximal operator may not have a closed form.

• Computing it may be as difficult as solving the original problem /

• Solution: use proximal splitting methods, a family of techniques

developed for non-smooth convex problems.

• Idea: split the problem into subproblems, that involve

• gradient descent steps for smooth terms,
• proximal steps for simple convex terms.

97

Non-smooth convex optimization

min
x∈Rn

{E(x) = F (x) +G(x)}

Proximal forward-backward algorithm

• Assume F is convex and differentiable with L-Lipschitz gradient

||∇F (x1)−∇F (x2)||2 6 L||x1 − x2||2, for all x1, x2 .

• Assume G is convex and simple, i.e., its prox is known in closed form

ProxγG(x) = argmin
z

1

2
||z − x||22 + γG(z)

• The proximal forward-backward algorithm reads

xk+1 = ProxγG(xk − γ∇F (xk))

• For 0 < γ < 2/L, it converges to a minimizer of E = F +G.

Aka, explicit-implicit scheme by analogy with PDE discretization schemes.

98

Non-smooth convex optimization

The LASSO problem: E(η) =
1

2
||y −Aη||22︸ ︷︷ ︸
F (η)

+ τ ||η||1︸ ︷︷ ︸
G(η)=

∑
i |ηi|

, A = HD

Iterative Soft-Thresholding Algorithm (ISTA) (Daubechies, 2004)

• F is convex and differentiable with L-Lipschitz gradient

∇F (η) = A∗(Aη − y) with L = ||A||22

• G is convex and simple, in fact separable:

ProxγG(η)i = Soft-T(ηi, γτ)

• The proximal forward-backward algorithm reads for 0 < γ < 2/L

ηk+1 = Soft-T(ηk − γ(A∗Aηk −A∗y), γτ)

and is known as Iterative Soft-Thresholding Algorithm (ISTA).

• Finally: x̂? = D̄η̂?

99

Non-smooth convex optimization

Preconditioned ISTA (1/2)

• Remark

η̂? ∈ argmin
η∈RK

1

2
||y −Aη||22 + τ ||η||1, A = H W̄+Λ1/2︸ ︷︷ ︸

D

∈ argmin
η∈RK

1

2
||y −HW̄+Λ1/2η||22 + τ ||η||1

• Λ1/2 invertible: bijection between z = Λ1/2η and η = Λ−1/2z

• Solving for η is equivalent to solve a weighted LASSO for z

ẑ? ∈ argmin
z∈RK

1

2
||y −HW̄+z||22 + τ ||Λ−1/2z||1

∈ argmin
z∈RK

1

2
||y −Bz||22 +

K∑
i=1

τ

λi
|zi|, B = HW̄+

• In practice, this equivalent problem has better conditioning.

100

Non-smooth convex optimization

Equivalent to: E(z) =
1

2
||y −Bz||22︸ ︷︷ ︸
F (z)

+ τ ||Λ−1/2z||1︸ ︷︷ ︸
G(z)=

∑
i
τ
λi
|zi|

, B = HW̄+

Preconditioned ISTA (2/2)

∇F (z) = B∗(Bz − y) with L = ||B||22

ProxγG(z)i = Soft-T

(
zi,

γτ

λi

)
• ISTA becomes for 0 < γ < 2/L

zk+1 = Soft-T

(
zk − γ(B∗Bzk −B∗y),

γτ

λi

)
• Finally: x̂? = W̄+ẑ?

• Leads to larger steps γ, better conditioning, and faster convergence.

101

Non-smooth convex optimization

zk+1 = ProxγG(zk − γ∇F (zk))

= Soft-T

(
zk − γ(B∗Bzk −B∗y),

γτ

λi

)
with B = HW̄+

Bredies & Lorenz (2007): E(zk)−E(z?) decays with rate O(1/k)

Fast ISTA (FISTA)

zk+1 = ProxγG
(
z̃k − γ∇F (z̃k)

)
z̃k+1 = zk+1 +

tk − 1

tk+1
(zk+1 − zk)

tk+1 =
1 +

√
1 + 4t2k
2

, t0 = 1

Beck & Teboulle (2009): E(zk)−E(z?) decays with rate O(1/k2)

102

Non-smooth convex optimization

(a) Input y: motion blur + noise (σ = 2)

50 100 150 200 250 300
10

-2

10
-1

10
0

10
1

10
2

ISTA

FISTA

(b) Convergence profiles

(c) Deconvolution ISTA(300)+UDWT (d) Deconvolution FISTA(300)+UDWT 103

Non-smooth convex optimization
In

p
u

t
IS

T
A

(3
0

0
)

F
IS

T
A

(3
0

0
)

(a) Image (b) Scale 4 (c) Scale 4 (d) Scale 4 (e) Scale 3 (f) Scale 3 (g) Scale 3

FISTA converges faster: sparser codes given a limited time budget

104

Sparsity: synthesis vs analysis

Sparse reconstruction: synthesis vs analysis

Sparse synthesis model with UDWT

• LASSO: η̂? ∈ argmin
η∈RK

1

2
||y −HW̄+Λ1/2η||22 + τ ||η||1

• Using the change of variable η = Λ−1/2z:

ẑ? ∈ argmin
z∈RK

1

2
||y −HW̄+z||22 + τ ||Λ−1/2z||1

Sparse analysis model with UDWT

• What about?

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Λ−1/2W̄x||1

• The change of variable η = Λ−1/2W̄x is not one-to-one.

• The two problems are not equivalent (unless W̄ is invertible).

105

Sparse reconstruction: synthesis vs analysis

106

Sparse reconstruction: synthesis vs analysis

Analysis versus synthesis (Elad, Milanfar, Rubinstein, 2007)

Generative: generate good images

x̂? = Dη̂? with η̂? ∈ argmin
η∈RK

1

2
||y −HDη||22 + τ ||η||pp, p > 0

Synthesis: images are linear combinations of a few columns of D.

Bayesian interpretation: MAP for the sparse code η.

Discriminative: discriminate between good and bad images

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||pp, p > 0

Analysis: images are correlated with a few rows of Γ.

Bayesian interpretation: MAP for x with an improper Gibbs prior.

107

Sparse reconstruction: synthesis vs analysis

η̂? ∈ argmin
η∈RK

1

2
||y −HDη||22 + τ ||η||pp (`pp-synthesis)

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||pp (`pp-analysis)

Common properties

Solution Problem

p = 0 Optimal sparse Non-convex & discontinuous (NP-hard)

0 < p < 1 Sparse Non-convex & continuous but non-smooth

p = 1 Sparse Convex & continuous but non-smooth

p > 1 Smooth Convex & differentiable

p = 2 Linear Quadratic

• Γ square and invertible ⇒ equivalent for D = Γ−1.

• Γ full-rank and p = 2 ⇒ equivalent for D = Γ+.

• LTI dictionaries ⇒ redundant filter bank.

108

Sparse reconstruction: synthesis vs analysis

η̂? ∈ argmin
η∈RK

1

2
||y −HDη||22 + τ ||η||pp (`pp-synthesis)

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||pp (`pp-analysis)

Synthesis

• D: synthesis dictionary.

• Atoms need to span images.

⇒ Low- & high-pass filters

⇒ Im[D] ≈ Rn

• Redundancy favor sparsity.

• K dimensional problem (> n).

• Prior separable.

Analysis

• Γ: analysis dictionary.

• Atoms need to sparsify images.

⇒ High-pass filters only

⇒ Ker[Γ] 6= ∅ (⊃ DC, coarse)

• Redundancy decreases sparsity.

• n dimensional problem (< K).

• Prior non-separable.

Quiz: What analysis dictionary is LTI and not too redundant?

109

Sparse reconstruction: synthesis vs analysis

η̂? ∈ argmin
η∈RK

1

2
||y −HDη||22 + τ ||η||pp (`pp-synthesis)

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||pp (`pp-analysis)

Link between analysis models and variational methods

• p = 2: Analysis model = Tikhonov regularization.

• p = 1 & Γ = ∇: Analysis model = anisotropic Total-Variation (TV)

TV filter bank = Horizontal and vertical gradient

︸ ︷︷ ︸
Spatial filter bank

︸ ︷︷ ︸
Spectral f.b. (real part)

︸ ︷︷ ︸
Spectral f.b. (imaginary part)

Can we use proximal forward-backward for `1-analysis prior?

110

Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22︸ ︷︷ ︸

F (x)

+ τ ||Γx||1︸ ︷︷ ︸
G(x)

(`1-analysis)

Proximal forward-backward for the `1-analysis problem?

• F convex and differentiable

• G convex but not simple (not separable)

−→ cannot use proximal forward backward /

• Exception: for denoising H = Idn (see: Chambolle algorithm, 2004)

Need another proximal optimization technique.

111

Non-smooth optimization

min
x∈Rn

{E(x) = F (x) +G(x)}

Alternating direction method of multipliers (ADMM) (∼1970)

• Assume F and G are convex and simple (+ some mild conditions).

• For any initialization x0, x̃0 and d0, the ADMM algorithm reads as

xk+1 = ProxγF (x̃k + dk)

x̃k+1 = ProxγG(xk+1 − dk)

dk+1 = dk − xk+1 + x̃k+1

• For γ > 0, xk converges to a minimizer of E = F +G.

Fast version: FADMM, similar idea as for FISTA (Goldstein et al., 2014).

Related concepts: Lagrange multipliers, Duality, Legendre transform.

How to use it for `1 analysis priors?

112

Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||1 (`1-analysis)

ADMM + Variable splitting (1/3)

• Define: X =

(
x

z

)
∈ Rn+K

• Consider: E(X) = F (X) +G(X)

with:


F

(
x

z

)
= ||y −Hx||22 + τ ||z||1

G

(
x

z

)
=

{
0 if Γx = z

∞ otherwise

• Remark 1: Minimizing E solves the `1-analysis problem.

• Remark 2: F and G are convex and simple ⇒ ADMM applies.

113

Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||1 (`1-analysis)

ADMM + Variable splitting (2/3)

Applying formula from slide 92:

F

(
x

z

)
= ||y −Hx||22 + τ ||z||1 −→ ProxγF

(
x

z

)
=

(
(Idn + γH∗H)−1(x+ γH∗y)

Soft-T(z, γτ)

)

G

(
x

z

)
=

{
0 if Γx = z

∞ otherwise︸ ︷︷ ︸
Indicator of the convex set
C={(x,z) ; Γx=z}

−→ ProxγG

(
x

z

)
=

(
Idn

Γ

)
(Idn + Γ∗Γ)−1(x+ Γ∗z)︸ ︷︷ ︸

Projection on C

114

Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||1 (`1-analysis)

ADMM + Variable splitting (3/3)

xk+1 = (Idn + γH∗H)−1(x̃k + dkx + γH∗y)

zk+1 = Soft-T(z̃k + dkz , γτ)

x̃k+1 = (Idn + Γ∗Γ)−1(xk+1 − dkx + Γ∗(zk+1 − dkz))

z̃k+1 = Γx̃k+1

dk+1
x = dkx − xk+1 + x̃k+1

dk+1
z = dkz − zk+1 + z̃k+1

If H is a blur, and Γ a filter bank, (Idn + γH∗H)−1 and (Idn + Γ∗Γ)−1 can

be computed in the Fourier domain in O(n logn).

115

Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||1 (`1-analysis)

Application to Total-Variation Γ = ∇

xk+1 = (Idn + γH∗H)−1(x̃k + dkx + γH∗y)

zk+1 = Soft-T(z̃k + dkz , γτ)

x̃k+1 = (Idn +∇∗∇)−1(xk+1 − dkx +∇∗(zk+1 − dkz))

z̃k+1 = ∇x̃k+1

dk+1
x = dkx − xk+1 + x̃k+1

dk+1
z = dkz − zk+1 + z̃k+1

∇∗ = −div and ∇∗∇ = −∆

116

Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||1 (`1-analysis)

Application to Total-Variation Γ = ∇

xk+1 = (Idn + γH∗H)−1(x̃k + dkx + γH∗y)

zk+1 = Soft-T(z̃k + dkz , γτ)

x̃k+1 = (Idn −∆)−1(xk+1 − dkx − div(zk+1 − dkz))

z̃k+1 = ∇x̃k+1

dk+1
x = dkx − xk+1 + x̃k+1

dk+1
z = dkz − zk+1 + z̃k+1

∇∗ = −div and ∇∗∇ = −∆

116

Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||1 (`1-analysis)

Application to sparse analysis with UDWT Γ = Λ−1/2W̄

xk+1 = (Idn + γH∗H)−1(x̃k + dkx + γH∗y)

zk+1 = Soft-T(z̃k + dkz ,
γτ

λi
)

x̃k+1 = (Idn + W̄ ∗W̄)−1(xk+1 − dkx + W̄ ∗(zk+1 − dkz))

z̃k+1 = W̄ x̃k+1

dk+1
x = dkx − xk+1 + x̃k+1

dk+1
z = dkz − zk+1 + z̃k+1

Tight-frame: W̄ ∗W̄ = Idn

117

Non-smooth optimization

x̂? ∈ argmin
x∈Rn

1

2
||y −Hx||22 + τ ||Γx||1 (`1-analysis)

Application to sparse analysis with UDWT Γ = Λ−1/2W̄

xk+1 = (Idn + γH∗H)−1(x̃k + dkx + γH∗y)

zk+1 = Soft-T(z̃k + dkz ,
γτ

λi
)

x̃k+1 =
1

2
(xk+1 − dkx + W̄ ∗(zk+1 − dkz))

z̃k+1 = W̄ x̃k+1

dk+1
x = dkx − xk+1 + x̃k+1

dk+1
z = dkz − zk+1 + z̃k+1

Tight-frame: W̄ ∗W̄ = Idn

117

Sparse analysis – Results

Deconvolution with UDWT (5 levels, Db2)

(a) Blurry image y (noise σ = 2) (b) Synthesis (FISTA) (c) Analysis (FADMM)

118

Sparse analysis – Results
S

yn
th

es
is

A
n

al
ys

is

(a) 1 level (b) 2 level (c) 3 level (d) 4 level (e) 5 level

Analysis allows for less decomposition levels.

⇒ leads to faster algorithms.

119

Sparse analysis – Results

(a) Noisy (σ = 40) (b) Analysis UDWT(4) (c) +block (orien.+col.) (d) Difference

• As for TV, group coefficients across orientations/color using `2,1 norms:

||Γz||2,1

• The soft-thresholding becomes the group soft-thresholding:[
Proxγ||·||2,1(z)

]
i

=

{
zi − γ zi

||zi||2
if ||zi||2 > γ

0 otherwise

120

Shrinkage, Sparsity and Wavelets – What’s next?

Reminder from last class:

Modeling the distribution of images is complex (large degree of freedom).

Applying LMMSE on patches → increase performance

Next class:

What if we use sparse priors, not for the distribution of images,

but for the distribution of patches?

121

Shrinkage, Sparsity and Wavelets – Further reading

For further reading

Sparsity, shrinkage and recovery guarantee:
• Donoho & Johnstone (1994); Moulin & Liu (1999); Donoho and Elad (2003);

Gribonval and Nielsen (2003); Candès and Tao (2005); Zhang (2008); Candès

and Romberg (2007).

• Book: Statistical Learning with Sparsity (Hastie, Tibshirani, Wainwright, 2015).

Wavelet related transforms:
• Warblet/Chirplet (Mann, Mihovilovic et al., 1991–1992), Curvelet (Candès &

Donoho, 2000), Noiselet (Coifman, 2001), Contourlet (Do & Vetterli, 2002),

Ridgelet (Do & Vetterli, 2003), Shearlets (Kanghui et al., 2005), Bandelet (Le

Pennec, Peyré, Mallat, 2005), Empirical wavelets (Gilles, 2013).

• Book: A wavelet tour of signal processing (Mallat, 2008)

Non-smooth convex optimization:
• Douglas-Rachford splitting (Combettes & Pesquet, 2007), Split Bregman

(Goldstein & Osher, 2009), Primal-Dual (Chambolle & Pock, 2011), Generalized

FB (Raguet et al., 2013), Condat algorithm (2014).

• Book: Convex Optimization (Boyd, 2004).

122

Questions?

Next class: Patch models and dictionary learning

Sources, images courtesy and acknowledgment

• L. Condat

• A. Horodniceanu

• G. Peyré

• J. Salmon

• Wikipedia

122

	Shrinkage functions
	Wavelet transforms
	Undecimated wavelet transforms
	Regularizations and optimization
	Sparsity: synthesis vs analysis

