
ECE 285 – Assignment #4
Non-local means

Written by Charles Deledalle on April 30, 2019.

In this assignment we will implement the non-local means algorithm as part of our image manipulation
library imagetools.

First, start a Jupyter Notebook, go into the subdirectory ece285 IVR assignments (or whatever you
named it), and create a new notebook assignment4 nlmeans.ipynb with

%load_ext autoreload

%autoreload 2

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

import time

import imagetools.assignment4 as im

%matplotlib notebook

We will use the following images:

� assets/castle.png

� assets/leopard.png

For the following questions, please write your code and answers directly in your notebook. Organize
your notebook with headings, markdown and code cells (following the numbering of the questions).

1 Bilateral filter

The bilateral filter is a denoising algorithm that reads as:
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where ϕ is the so-called kernel function, C the number of channels (1 for grayscale, 3 for RGB), and
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where σ2 is the variance of the noise, assumed to be additive white and Gaussian, and h > 0 the filtering
parameter.

1. From your notebook, load the image x = castle and add additive white Gaussian noise of standard
deviation σ = 10/255 as

sig = 10 / 255

y = x + sig * np.random.randn(*x.shape)
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%load_ext autoreload
%autoreload 2
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import time
import imagetools.assignment4 as im

%matplotlib notebook




2. Create in imagetools/assignment4.py, a function

def bilateral_naive(y, sig, s1=2, s2=2, h=1):

n1, n2 = y.shape[:2]

c = y.shape[2] if y.ndim == 3 else 1

...

return x

that implements the bilateral filter (except around boundaries). Note that the first and last lines
are used to work likewise for grayscale images of shape (n1, n2), and RGB images of shape (n1,

n2, 3). In this naive version use four loops as

x = np.zeros(y.shape)

Z = np.zeros((n1, n2, *[1] * (y.ndim - 2)))

for i in range(s1, n1-s1):

for j in range(s2, n2-s2):

for k in range(-s1, s1 + 1):

for l in range(-s2, s2 + 1):

dist2 = ((y[i + k, j + l] - y[i, j])**2).mean()

# complete

Z[Z == 0] = 1

x = x / Z

3. Complete your notebook to test your function on y with s1 = s2 = 2 and h = 1. Zoom on the
results to check that your functions are consistent with the following ones:

(a) Original (b) Noisy (c) Naive (s = 2, 88s) (d) Bilateral (s = 7, 2.9s)

4. Create in imagetools/assignment4.py, the function

def bilateral(y, sig, s1=10, s2=10, h=1, boundary='mirror')

that implements the bilateral filter including around boundaries. The idea is to switch the k, l loops
with the i, j loops, and then make use of shift. The final code should read with only two loops
and deal with boundary conditions.

5. Test your new function and compare the computation times with the naive approach.

6. Increase the search window size to s1 = s2 = 7. Increase the noise level σ. What do you observe?
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sig = 10 / 255
y   = x + sig * np.random.randn(*x.shape)



def bilateral_naive(y, sig, s1=2, s2=2, h=1):
    n1, n2 = y.shape[:2]
    c = y.shape[2] if y.ndim == 3 else 1
    ...
    return x



x = np.zeros(y.shape)
Z = np.zeros((n1, n2, *[1] * (y.ndim - 2)))
for i in range(s1, n1-s1):
    for j in range(s2, n2-s2):
        for k in range(-s1, s1 + 1):
            for l in range(-s2, s2 + 1):
                dist2 = ((y[i + k, j + l] - y[i, j])**2).mean()
                # complete
Z[Z == 0] = 1
x = x / Z



def bilateral(y, sig, s1=10, s2=10, h=1, boundary='mirror')




2 NL-means filter

The NL-means filter is an extension of the bilateral filter, where instead of averaging values of pixels
with similar values, the values of pixels centered on similar patches are averaged. The NL-means reads
as:
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where (−p1, p1) × (−p2, p2) is the domain of a patch and P = (2p1 + 1) × (2p2 + 1) is its size. We will

choose the following kernel function ϕ(α) = exp
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7. Create in imagetools/assignment4.py, the function

def nlmeans_naive(y, sig, s1=2, s2=2, p1=1, p2=1, h=1)

that implements (except around boundaries) the NL-means filter with six loops as

for i in range(s1, n1-s1-p1):

for j in range(s2, n2-s2-p2):

for k in range(-s1, s1 + 1):

for l in range(-s2, s2 + 1):

dist2 = 0

for u in range(-p1, p1 + 1):

for v in range(-p2, p2 + 1):

# complete

Note that your function should work likewise for grayscale images of shape (n1, n2), or RGB
images of shape (n1, n2, 3).

8. In your notebook, load the image x = leopard and create y by adding additive white Gaussian
noise of standard deviation σ = 20/255. Test your function on y with s1 = s2 = 2 and p1 = p2 = 1.
Note: This question can take 10-15 mins to run.

9. Create in imagetools/assignment4.py, the function

def nlmeans(y, sig, s1=7, s2=7, p1=None, p2=None, h=1, boundary='mirror'):

p1 = (1 if y.ndim == 3 else 2) if p1 is None else p1

p2 = (1 if y.ndim == 3 else 2) if p2 is None else p2

...

that implements the NL-means filter (including around boundaries) with two loops only. What is
the patch size?

Hint: you just need to use the function convolve.

10. In your notebook, test your new function with s1 = s2 = 2 and p1 = p2 = 1 and compare the results
and check that your new function is more than 500 times faster.
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def nlmeans_naive(y, sig, s1=2, s2=2, p1=1, p2=1, h=1)



for i in range(s1, n1-s1-p1):
    for j in range(s2, n2-s2-p2):
        for k in range(-s1, s1 + 1):
            for l in range(-s2, s2 + 1):
                dist2 = 0
                for u in range(-p1, p1 + 1):
                    for v in range(-p2, p2 + 1):
                        # complete



def nlmeans(y, sig, s1=7, s2=7, p1=None, p2=None, h=1, boundary='mirror'):
    p1 = (1 if y.ndim == 3 else 2) if p1 is None else p1
    p2 = (1 if y.ndim == 3 else 2) if p2 is None else p2
    ...




11. What is the complexity of both approaches?

12. A very classical (but controversial) way to compare the quality of restoration techniques is to use
the PSNR (Peak Signal-to-Noise-Ratio) defined for images as

PSNR = 10 log10
R2

1
n ||x− x0||

2
2

(3)

where x0 is the ideal image, x the estimate obtained from y, R the range of pixel values (255 for
8bits images, 1 for image in [0, 1], etc), and n the number of elements in x. The PSNR measures in
decibels (dB) the quality of the restoration: the higher the better. Implement the function:

def psnr(x, x0)

13. Increase to s1 = s2 = 7. Compare with the bilateral filter. Share axes and zoom on the results to
check that your function is consistent with the following ones:

(e) Original (f) Noisy (g) Bilateral (29.82dB, 3s) (h) NLM (30.46dB, 5s)

14. Play with the noise level and the filtering parameter h. What do you observe?
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def psnr(x, x0)



