
ECE 285 – Assignment #6
Wiener Deconvolution

Written by Charles Deledalle on May 14, 2019.

In this assignment we will implement the Wiener deconvolution algorithm as part of our image
manipulation library imagetools.

First, start a Jupyter Notebook, go into the subdirectory ece285 IVR assignments (or whatever you
named it), and create a new notebook assignment6 wiener.ipynb with

%load_ext autoreload

%autoreload 2

import numpy as np

import numpy.fft as npf

import matplotlib

import matplotlib.pyplot as plt

import time

import imagetools.assignment6 as im

%matplotlib notebook

We will use

� assets/eagle.png • assets/plane.png

� assets/owls blur.png • assets/sheeps.png

For the following questions, please write your code and answers directly in your notebook. Organize
your notebook with headings, markdown and code cells (following the numbering of the questions).

1 Spectral deconvolution

An important ingredient for spectral deconvolution is the concept of mean power spectral density.
The mean power spectral density is the expectation of the power spectral density for the given population
(subset) of images that we are targeting. The formal definition is

Su,v = E[(Sx)u,v] where (Sx)u,v = |x̂u,v|2 =

∣∣∣∣∣
n1−1∑
k=0

n2−1∑
l=0

xk,le
−i2π

(
uk
n1

+ vl
n2

)∣∣∣∣∣
2

. (1)

where the expectation E is relative to a probability space on which images x are seen as random vectors.
In theory, to determine the mean power spectral density, one has to choose a probability space for x and
evaluate the above expectation (which usually leads to the computation of a difficult integral). Instead,
we will assume that Su,v follows a power law of the form

Su,v = n1n2e
βωαu,v for ωu,v 6= 0 where ωu,v =

√(
u

n1

)2

+

(
v

n2

)2

. (2)

In the first part, we are going to estimate α and β on a subset of three training images. Once α and β
have been determined, we will use them to deconvolve a test image in the second part.

1

%load_ext autoreload
%autoreload 2
import numpy as np
import numpy.fft as npf
import matplotlib
import matplotlib.pyplot as plt
import time
import imagetools.assignment6 as im

%matplotlib notebook

1.1 Part I (mean power spectral density)

1. Create in imagetools/assignment6.py, a function

def average_power_spectral_density(x)

that takes a list of images x[1], x[2], ..., x[K], and compute the average of their power spectral
density

S(avg)
u,v =

1

K

K∑
k=1

|x̂(k)u,v|2 (3)

For color images, average the power spectral density of each channel.

2. Run your new function on the three images x[1] = eagle, x[2] = plane and x[3] = sheeps, and
display the logarithm of S(avg) as

im.showfft(apsd, apply_log=True, vmin=-10, vmax=5)

3. Show that except for the 0 frequency (ωu,v 6= 0), we have αtu,v + β = su,v where tu,v = logωu,v and
su,v = logSu,v − log n1 − log n2.

4. We now assume that S ≈ S(avg), and based on the above equation, we are going to estimate α and β
from S(avg) by least square linear regression. In our case, the least square linear regression consists
in looking for α and β that minimizes the following sum of square errors (SSE)

SSE(α, β) =
1

2

∑
06u<n1
06v<n2

(u,v)6=(0,0)

(αtu,v + β − s(avg)u,v)2 . (4)

where s
(avg)
u,v = logS

(avg)
u,v − log n1 − log n2. Find the mathematical expression of α and β that

minimizes the SSE.

Hint: they simultaneously cancel the partial derivatives of SSE with respect to α and β.

5. Based on these expressions, in imagetools/assignment6.py, write a function

def mean_power_spectrum_density(apsd):

...

return mpsd, alpha, beta

that returns the estimated mean power spectral density S and the values of α and β.
Set mpsd[0, 0] = np.inf.

6. In your notebook, call your new function in order to estimate S from S(avg). What are the values
of α and β?

7. Display next to S(avg), the logarithm of S (using the same colormap and range). Display also one-
dimensional slices of S(avg) and S (by superimposition), for the frequency u = 0 and u = 50. Check
that your results are consistent with the following ones:

2

def average_power_spectral_density(x)

im.showfft(apsd, apply_log=True, vmin=-10, vmax=5)

def mean_power_spectrum_density(apsd):
 ...
 return mpsd, alpha, beta

1.2 Part II (Wiener deconvolution)

8. Load and display the image y = owls blur and the logarithm of its spectrum. This image is
corrupted by a blur of spread τ = 2, and a noise with standard deviation σ = 1/255. Our purpose
is to recover the sharp underlying image.

9. Use im.kernel and im.kernel2fft to create the frequency response λ corresponding to an expo-
nential blur with τ = 2.

10. In the first naive approach, we are going to deconvolve this image by simply dividing its spec-
trum by λ or, equivalently, multiplying it by the transfer function ĥ = λ∗/|λ|2. Write in
imagetools/assignment6.py the function

def deconvolve_naive(y, lbd, return_transfer=False):

...

if return_transfer:

return xdec, hhat

else:
return xdec

3

that computes ĥ and the deconvolved image as x(dec) = F−1(ĥ · ŷ) (don’t forget to take the real
part). Display x and the modulus |ĥ| of ĥ. Interpret the results.

11. Repeat this experiment with the Gaussian and the box kernel for τ = 2. What is the condition
number of each of these three deconvolution problems? Interpret the results.

12. The Wiener deconvolution consists of the same thing as the naive version, but instead with the
following transfer function

ĥu,v =
λ∗u,v

|λu,v|2 + n1n2σ2/Su,v
(5)

What does this filter tend to do when σ approaches 0? or +∞?

13. Create in imagetools/assignment6.py the function

def deconvolve_wiener(x, lbd, sig, mpsd, return_transfer=False)

that implements the Wiener deconvolution, returns the result and the transfer function ĥ. Complete
your notebook, to deconvolve x using the mean power spectrum density S that was learned in the
first part of this exercise, and assuming an exponential kernel. Display |ĥ|, and the deconvolved
image x. Check that your results are consistent with the following ones:

(a) Blurry image (b) Naive deconvolution (c) Wiener deconvolution (d) Transfer function

14. What does Wiener deconvolution do?

15. Repeat for the Gaussian and the box kernel.
Which of these three kernel functions fits the best on our deconvolution problem?

4

def deconvolve_naive(y, lbd, return_transfer=False):
 ...
 if return_transfer:
 return xdec, hhat
 else:
 return xdec

def deconvolve_wiener(x, lbd, sig, mpsd, return_transfer=False)

