
ECE 285 – Project D
Non-Local Regularization

Written by Charles Deledalle on May 31, 2019.

You will have to submit a notebook projectD.ipynb and the package imagetools/projectD.py.
Organize your notebook with headings (following the numbering of the questions). For writing questions,
answer directly in your notebook in markdown cells. For each section, it is indicated in brackets how
much it contributes to the grade.

This project focuses on image restoration with non-local means Before starting this project you
will need to have gone through all assignments. Functions developed in this project will complete the
imagetools package. We will be using the following assets

� assets/jockeys.png • assets/starfish.png • assets/zebra.png

1 Operators (25%)

We focus on the estimation of a clean image x0 form its degraded observation y satisfying

y = Hx0 + ε

where ε is a white Gaussian noise component with standard deviation σ, and H a linear operator. We will
consider three types of linear operators: identity (denoising problem), convolution (deblurring problem),
and random masking (inpainting problem).

We will need to be able to compute for any images x:

� the application of H to x: x 7→ Hx,

� the application of its adjoint: x 7→ H∗x,

� the application of its gram matrix: x 7→ H∗Hx,

� the resolvent of its gram matrix: x 7→ (Id + τH∗H)−1x.

A linear operator will be represented by a Python object as an instance of a class that inherits from our
homemade abstract class LinearOperator defined in imagetools/provided.py. Please have a look at
the code. Note that LinearOperator has a method norm2 that returns an approximation of the spectral
norm of the operator ‖ · ‖2 and normfro that returns an approximation of the Frobenius norm ‖ · ‖F . It
also has two properties ishape and oshape, the first one is the shape of the input of the operator, the
second is the shape of the output. Any class that inherits from it must implement (at least):

� call (self, x) • adjoint(self, x)

� gram(self, x) • gram resolvent(self, x, tau)

As an example, we provided Grad that reuses functions from the previous assignments to implement each
of these methods for the gradient operator. An object can be instantiated as H = im.Grad((n1, n2,

3)) for the gradient of a RGB image of shape (n1, n2, 3).
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1. In imagetools/projectD.py, create a class Identity that implements the identity operator x 7→ x.
An object can be instantiated as H = im.Identity(shape).

2. Create a class Convolution that implements the convolution operator x 7→ ν ∗ x. An object
can be instantiated as Convolution(shape, nu, separable=None). As we will manipulate large
convolution kernels ν, all operations should be implemented in the Fourier domain. Note that during
this project, we will always consider periodical boundary conditions.

Hint: reuse functions from the assignments.

3. Create a class RandomMasking that implements the linear operator that sets a proportion p of
arbitrary pixels to zeros. An object can be instantiated as H = im.RandomMasking(shape, p).

4. In your notebook, load the image x0 = starfish. Create a version y for each of the three operators.
For the random masking we will consider p = .4. For the convolution we will consider the motion
kernel ν. Display the result and check that they are consistent with the following ones.

5. For the three linear operators, check that 〈Hx, y〉 = 〈x, H∗y〉 for any arbitrary arrays x and y of
shape H.ishape and H.oshape respectively (you can generate x and y randomly).

6. Check also that (Id + τH∗H)−1(x+ τH∗Hx) = x for any arbitrary image x of shape H.ishape.

2 Sinkhorn-Knopp NL-means filter (20%)

The Non-Local means (NL-means) filter was defined (refer to Chapter 2) as

x
(NL-means)
i,j =

s1∑
k=−s1

s2∑
l=−s2

wi,j,i+k,j+l · yi+k,j+l (1)

where wi1,j1,i2,j2 =
1

Zi1,j1

{
ϕ
(
1
P ||yi1,j1 − yi2,j2 ||

2
2

)
if |i1 − i2| 6 s1 and |j1 − j2| 6 s2

0 otherwise
, (2)

where yi,j = (yi+a,j+b)−p16a6p1,−p26b6p2 , and s1, s2, p1, p2 and ϕ are as defined in assignment 4. The
normalization constant Zi1,j1 is defined such that

∑
i2,j2

wi1,j1,i2,j2 = 1. The weights are said to be row-
stochastic. The bi-stochastic NL-means is a variant in which the weights w are replaced by bi-stochastic
weights w̃ satisfying also

∑
i1,j1

w̃i1,j1,i2,j2 = 1. A simple iterative procedure to get bi-stochastic weights

is called Sinkhorn-Knopp algorithm and reads, for t > 0 and w̃0
i1,j1,i2,j2

= wi1,j1,i2,j2 , as

w̃t+1
i1,j1,i2,j2

=
w̃

t+1/2
i1,j1,i2,j2∑

i2,j2
w̃

t+1/2
i1,j1,i2,j2︸ ︷︷ ︸

row normalization

and w̃
t+1/2
i1,j1,i2,j2

=
w̃t
i1,j1,i2,j2∑

i1,j1
w̃t
i1,j1,i2,j2︸ ︷︷ ︸

column normalization

. (3)

As t→∞, we are guaranteed that w̃ is the closest bi-stochastic array from w.
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7. Let Wi,j,k,l = wi,j,i+k,j+l. Show that∑
16i26n1
16j26n2

wi1,j1,i2,j2 =
∑

−s16k6s1
−s26l6s2

Wi1,j1,k,l and
∑

16i16n1
16j16n2

wi1,j1,i2,j2 =
∑

−s16k6s1
−s26l6s2

Wi2−k,j2−l,k,l .

8. In imagetools/projectD.py, write the function

def sinkhorn_knopp(W, s1, s2, T, boundary)

that performs T iterations of the Sinkhorn-Knopp algorithm directly on the array W of shape
(n1, n2, 1, S) stacking for each pixel the collection of weights for all possible shifts in the search
window S = (2s1 + 1)× (2s2 + 1). It returns the updated array W .

Hint: rely on the results form the previous question and use im.shift.

9. Recopy the function nlmeans from assignment 4, and add an extra optional argument T

def nlmeans(y, sig, s1=7, s2=7, p1=None, p2=None, h=1, T=1, boundary='mirror')

Keep the general idea of your previous implementation, but decompose the process into three parts:
creation of the stack of weights W , application of Sinkhorn-Knopp algorithm, and weighted average.

10. Complete your notebook to test your new variant on the corrupted version y of x0 = zebra with
additive white Gaussian noise of standard deviation σ = 20/255. Compare the quality (PSNR) and
the execution times of bi-stochastic NL-means for different values of T and check that your results
are consistent with the following ones:

3 Block-wise NL-means filter (15%)

The block-wise NL-means is another variant of NL-means, where instead of averaging values of pixels
with similar patches, similar patches are first averaged together:

xBNLM
i,j =

s1∑
k=−s1

s2∑
l=−s2

Wi,j,k,l · yi+k,j+l (4)

Next all restored patches are projected into the image domain at their original locations by averaging as

xBNLM
i,j =

1

P

p1∑
a=−p1

p2∑
b=−p2

(xBNLM
i+a,j+b)−a,−b. (5)

3


def sinkhorn_knopp(W, s1, s2, T, boundary)



def nlmeans(y, sig, s1=7, s2=7, p1=None, p2=None, h=1, T=1, boundary='mirror')




11. Plug these two equations together, and show that

xBNLM
i,j =

1

P

s1∑
k=−s1

s2∑
l=−s2

p1∑
a=−p1

p2∑
b=−p2

Wi+a,j+b,k,l · yi+k,j+l .

Hint: note that (yi,j)−a,−b = yi−a,j−b.

12. In imagetools/projectD.py, add to the function nlmeans an extra optional argument block

def nlmeans(y, sig, s1=7, s2=7, p1=None, p2=None, h=1, T=1, block=True,

boundary='mirror')

and implement the block-wise NL-means but without adding extra explicit loops (this must be
performed after modifying the weights with Sinkhorn-Knopp algorithm).

Hint: you just need to add a single line calling the function im.convolve.

13. Complete your notebook to test the block-wise NL-means on y with default parameters, improving
the performance by about .2dB.

14. Why does the block-wise NL-means show improved performance as compared to the standard NL-
means?

4 Smoothed Non-Local means (20%)

A difficulty with NL-means is that some residual noise remains where not enough similar patches are
found in the search window. This is known as the rare patch effect.

15. Let x0 ∈ R and yi = x0 + εi ∈ R for i = 1, . . . , N , where εi are independent, E[εi] = 0 and
Var[εi] = σ2 > 0. Consider the average

xAVG =
1

N

N∑
i=1

yi .

What is its bias and variance as an estimator of x0? By how much does it reduce the noise variance?

16. Give a statistical interpretation of the rare patch effect.

17. Let wi > 0 and
∑

iwi = 1 be the weights and consider the weighted average

xWAVG =
N∑
i=1

wiyi .

Assume that all wi and yi are independent. What is its bias and variance as an estimator of x0?
By how much does it reduce the noise variance?

18. Add an extra optional argument return noise reduction

def nlmeans(y, sig, s1=7, s2=7, p1=None, p2=None, h=1, T=1, block=True,

boundary='mirror', return_noise_reduction=False):

...

if return_noise_reduction:

return x, noise_reduction

else:
return x
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def nlmeans(y, sig, s1=7, s2=7, p1=None, p2=None, h=1, T=1, block=True,
            boundary='mirror')




such that your function returns a (n1, n2, 1) array in which each value is the factor of noise variance
reduction at that pixel location.

19. Show that if wi = max
16j6N

wj for 1 6 i 6 K 6 N , then the weighted average reduces the noise by at

least a factor of K. Note that wi = wi/
∑

j wj since
∑

j wj = 1.

20. Smoothed NL means reduces the noise variance by at least K by enforcing the K most similar
patches to have the same weight as the most similar one. Add an extra optional argument K

def nlmeans(y, sig, s1=7, s2=7, p1=None, p2=None, h=1, T=1, K=4, block=True,

boundary='mirror', return_noise_reduction=False)

and implement the smoothed NL means of factor K for the case where K > 0. This has to be
performed after the Sinkhorn-Knopp algorithm but before block reprojection.

Hint: use np.argsort, np.put along axis and np.take along axis. Don’t forget to renormalize!

21. Complete your notebook to test the smoothed NL-means on y with default parameters and compare
the quality (PSNR) and the execution times of nlmeans with Sinkhorn-Knopp (T = 1) or not
(T = 0), block or not, smoothing (K = 4) or not (K = 0). For each case display the noise variance
reduction map and the residue. Interpret the results. Check that your results are consistent with
the following ones.

Figure 1: (Top) Denoised images x with NL-means (NLM, 3.8s), Sinkhorn NL-means (SNLM, 7.3s),
Block+Sinkhorn NL-means (BSLNM, 9.0s), and Smoothed+Block+Sinkhorn NL-means (SBSNLM,
10.0s). PSNRs are in brackets. (Middle) Noise reduction map (in log scale). (Bottom) Residue y − x.
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def nlmeans(y, sig, s1=7, s2=7, p1=None, p2=None, h=1, T=1, block=True,
            boundary='mirror', return_noise_reduction=False):
    ...
    if return_noise_reduction:
        return x, noise_reduction
    else:
        return x



def nlmeans(y, sig, s1=7, s2=7, p1=None, p2=None, h=1, T=1, K=4, block=True,
            boundary='mirror', return_noise_reduction=False)




5 Non-Local Regularization with Plug-and-Play ADMM (20%)

Plug-and-play ADMM (Alternating Direction Method of Multipliers) is a technique that can embed
a Gaussian denoiser to solve a linear restoration problem of the form: y = Hx+ ε. It reads as

xk+1 = (Idn + γH∗H)−1(x̃k + dk + γH∗y)

x̃k+1 = denoise(xk+1 − dk, σ, γ)

dk+1 = dk − xk+1 + x̃k+1

where denoise(y, σ, h) is a denoiser for Gaussian noise with standard deviation σ and smoothing parameter
h (Refer to Chapter 7 for more details). Note that the variables x̃ and d are images of same shape as x.

22. In imagetools/projectD.py, create the function

def nlmeans_regularization(y, sig, gamma=None, H=None, m=10,

s1=7, s2=7, p1=None, p2=None, h=1, K=4, block=True,

boundary='mirror')

that implements m iterations of Plug-and-play ADMM with NL-means denoiser (or variants). When
gamma is None, we will consider γ = n1n2C/||H||2F . We will choose x0 = x̃0 = H∗y and d = 0.

23. In your notebook, load the image x0 = jockeys and create a blurry version y by defining H as
the motion blur kernel, and add a Gaussian noise of standard deviation σ = 2/255. Apply your
deblurring function on y.

Results may look like the following ones:

24. Repeat the experiment but with a random masking of 40% for m = 10 and next m = 40.

6 Bonus (+10% max)

• In denoising, for different noise levels and variants, compare your implementation of NL-means with
the one of Scikit image: skimage.restoration.denoise nl means.
• Implement super-resolution.
• Make the algorithm faster by implementing some parts in cypthon.
• Implement and discuss further possible improvements.
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def nlmeans_regularization(y, sig, gamma=None, H=None, m=10,
                           s1=7, s2=7, p1=None, p2=None, h=1, K=4, block=True,
                           boundary='mirror')



