
ECE 285

Machine Learning for Image Processing

Chapter II – Preliminaries to deep learning

Charles Deledalle

November 16, 2019

1

Deep learning – What is deep learning?

What is deep learning?

• Part of the machine learning field of learning representations of data.

Exceptionally effective at learning patterns.

• Utilizes learning algorithms that derive meaning out of data by using a

hierarchy of multiple layers that mimic the neural networks of our brain.

• If you provide the system tons of information, it begins to understand it

and respond in useful ways.

• Rebirth of artificial neural networks.

(Source: Lucas Masuch)

2

Machine learning – Brief history

Brief history

• First wave
• 1943. McCulloch and Pitts proposed the first neural model,
• 1958. Rosenblatt introduced the Perceptron,
• 1969. Minsky and Papert’s book demonstrated the limitation of single

layer perceptrons, and almost the whole field went into hibernation.

• Second wave
• 1986. Backpropagation learning algorithm was rediscovered,
• 1989. Yann LeCun (re)introduced Convolutional Neural Networks,
• 1998. Breakthrough of CNNs in recognizing hand-written digits.

• Third wave
• 2006. Deep (neural network) learning gains popularity,
• 2012. Made significant breakthroughs in many applications,
• 2015. AlphaGo first program to beat a professional Go player.

(Source: Jun Wang)

3

Deep learning – Interest

Google NGRAM

(Source: Lucas Masuch)

4

Machine learning – Timeline

Timeline of (deep) learning

1974 Backpropagation

1995
SVM reigns

Convolution Neural Networks for
Handwritten Recognition

1998

2006
Restricted
Boltzmann

Machine

1958 Perceptron

1969

Perceptron criticized

Google Brain Project on
16k Cores

2012

2012
AlexNet wins

ImageNet

Perceptrons

book

~1980

Multilayer

network Support Vector Machines

feature 1

fe
a
tu

re
 2

Support Vectors

Maximal

Margin

Hyperplane

X1

X2

X3

X4

W11

W12

W13

W14

f(x)

Input Weights Sum
Activation

Function

arti cial

Neuron

awkward silence (AI winter)

(Source: Lucas Masuch & Vincent Lepetit)
5

Perceptron

Machine learning – ANN - Backpropagation

Perceptron

1958 Perceptron

1969

Perceptron criticized

Perceptrons

book

X1

X2

X3

X4

W11

W12

W13

W14

f(x)

Input Weights Sum
Activation

Function

arti cial

Neuron

(Source: Lucas Masuch & Vincent Lepetit)
6

Machine learning – Perceptron

Perceptron (Frank Rosenblatt, 1958)

First binary classifier based on supervised learning (discrimination).

Foundation of modern artificial neural networks.

At that time: technological, scientific and philosophical challenges.

7

Machine learning – Perceptron – Representation

Representation of the Perceptron

Parameters of the perceptron

• wk: synaptic weights

• b: bias

}
←− real parameters to be estimated.

Training = adjusting the weights and biases

8

Machine learning – Perceptron – Inspiration

The origin of the Perceptron

Takes inspiration from the visual system known for its ability to learn patterns.

• When a neuron receives a stimulus

with high enough voltage, it emits

an action potential (aka, nerve

impulse or spike). It is said to fire.

• The perceptron mimics this

activation effect: it fires only when∑
i

wixi + b > 0

y = sign(w0x0 + w1x1 + w2x2 + w3x3 + b)︸ ︷︷ ︸
f(x;w)

=

{
+1 for the first class

−1 for the second class

9

Machine learning – Perceptron – Principle

1 Data are represented as vectors:

2 Collect training data with positive and negative examples:

(Source: Vincent Lepetit) 10

Machine learning – Perceptron – Principle

Dot product:

〈w, x〉 =
d∑
i=1

wixi

= wTx

3 Training: find w and b so that:

• 〈w, x〉+ b is positive for positive samples x,
• 〈w, x〉+ b is negative for negative samples x.

(Source: Vincent Lepetit) 10

Machine learning – Perceptron – Principle

Dot product:

〈w, x〉 =
d∑
i=1

wixi

= wTx

3 Training: find w and b so that:

• 〈w, x〉+ b is positive for positive samples x,
• 〈w, x〉+ b is negative for negative samples x.

The equation 〈w, x〉+ b = 0 defines a hyperplane.

The hyperplane acts as a linear separator.

w is a normal vector to the hyperplane.

(Source: Vincent Lepetit) 10

Machine learning – Perceptron – Principle

4 Testing: the perceptron can now classify new examples.

• A new example x is classified positive if 〈w, x〉+ b is positive,
• and negative if 〈w, x〉+ b is negative.

(Source: Vincent Lepetit) 10

Machine learning – Perceptron – Principle

4 Testing: the perceptron can now classify new examples.

• A new example x is classified positive if 〈w, x〉+ b is positive,

• and negative if 〈w, x〉+ b is negative.

(Source: Vincent Lepetit) 10

Machine learning – Perceptron – Principle

4 Testing: the perceptron can now classify new examples.

• A new example x is classified positive if 〈w, x〉+ b is positive,
• and negative if 〈w, x〉+ b is negative.

(Source: Vincent Lepetit) 10

Machine learning – Perceptron – Principle

4 Testing: the perceptron can now classify new examples.

• A new example x is classified positive if 〈w, x〉+ b is positive,
• and negative if 〈w, x〉+ b is negative.

(signed) distance of x to the hyperplane:

r =
〈w, x〉+ b

||w||

(Source: Vincent Lepetit) 10

Machine learning – Perceptron – Representation

Alternative representation

Use the zero-index to encode the bias as a synaptic weight.

Simplifies algorithms as all parameters can now be processed in the same way.

11

Machine learning – Perceptron – Training

Perceptron algorithm

Goal: find the vector of weights w from a labeled training dataset T

How: minimize classification errors

min
w

E(w) = −
∑

(x,d)∈T
st y 6=d

d× 〈w, x〉

• penalize only misclassified samples (y 6= d) for which d× 〈w, x〉 < 0,

• zero if all samples are correctly classified.

12

Machine learning – Perceptron – Training

Perceptron algorithm

Algorithm:

• Initialize w randomly

• Repeat until convergence

• For all (x, d) ∈ T
• Compute: y = sign〈w, x〉
• If y 6= d:

Update: w ← w + dx

• Converges to some solution if the training data are linearly separable,

• Corresponds to stochastic gradient descent for E(w) (see later),

• But may pick any of many solutions of varying quality.

⇒ Poor generalization error.

13

Machine learning – Perceptron – Training

Variant: ADALINE (Adaptive Linear Neuron) algorithm
(Widrow & Hoff, 1960).

Loss: minimize instead the least square error with the prediction without sign

min
w

E(w) =
∑

(x,d)∈T

(〈w, x〉 − d)2

Algorithm:

• Initialize w randomly

• Repeat until convergence

• For all (x, d) ∈ T
• Compute: y = 〈w, x〉
• Update: w ← w + γ(d− y)x, γ > 0

Also corresponds to stochastic gradient descent for E(w) (see later).

14

Machine learning – Perceptron – Training

Perceptron vs ADALINE algorithm

Activation function = sign

15

Machine learning – Perceptron – Perceptrons book

Perceptrons book (Minsky and Papert, 1969)

A perceptron can only classify data points that are linearly separable:

+1

+1

Seen by many as a justification to stop research on perceptrons.

(Source: Vincent Lepetit)

16

Artificial neural network

Machine learning – Artificial neural network

Artificial neural network

(Source: Lucas Masuch & Vincent Lepetit)
17

Machine learning – Artificial neural network

Artificial neural network

• Supervised learning method initially inspired by

the behavior of the human brain.

• Consists of the inter-connection of several

small units (just like in the human brain).

• Introduced in the late 50s, very popular in the

90s, reappeared in the 2010s with deep

learning.

• Also referred to as Multi-Layer Perceptron (MLP).

• Historically used after feature extraction.

18

Machine learning – Artificial neural network

Artificial neuron (McCulloch & Pitts, 1943)

• An artificial neuron contains several incoming weighted connections, an

outgoing connection and has a nonlinear activation function g.

• Neurons are trained to filter and detect specific features or patterns (e.g.

edge, nose) by receiving weighted input, transforming it with the

activation function and passing it to the outgoing connections.

• Unlike the perceptron, can be used for regression (with proper choice of g).

19

Machine learning – ANN

Artificial neural network / Multilayer perceptron / NeuralNet

• Inter-connection of several artificial

neurons (also called nodes or units).

• Each level in the graph is called a layer:

• Input layer,
• Hidden layer(s),
• Output layer.

• Each neuron in the hidden layers acts as a

classifier / feature detector.

• Feedforward NN (no cycle)

• first and simplest type of NN,
• information moves in one direction.

• Recurrent NN (with cycle)

• used for time sequences,
• such as speech-recognition.

Quiz: how many layers does

this network have?

wkij synaptic weight between previous node j

and next node i at layer k.

gk are any activation function applied to each coefficient of its input vector.

The matrices Wk and biases bk are learned from labeled training data.

20

Machine learning – ANN

Artificial neural network / Multilayer perceptron / NeuralNet

h1 = g1
(
w1

11x1 + w1
12x2 + w1

13x3 + b11
)

h2 = g1
(
w1

21x1 + w1
22x2 + w1

23x3 + b12
)

h3 = g1
(
w1

31x1 + w1
32x2 + w1

33x3 + b13
)

h4 = g1
(
w1

41x1 + w1
42x2 + w1

43x3 + b14
)

h = g1 (W1x+ b1)

y1 = g2
(
w2

11h1 + w2
12h2 + w2

13h3 + w2
14h4 + b21

)
y2 = g2

(
w2

21h1 + w2
22h2 + w2

23h3 + w2
24h4 + b22

)

y = g2 (W2h+ b2)

wkij synaptic weight between previous node j and next node i at layer k.

gk are any activation function applied to each coefficient of its input vector.

The matrices Wk and biases bk are learned from labeled training data.

21

Machine learning – ANN

Artificial neural network / Multilayer perceptron / NeuralNet

h1 = g1
(
w1

11x1 + w1
12x2 + w1

13x3 + b11
)

h2 = g1
(
w1

21x1 + w1
22x2 + w1

23x3 + b12
)

h3 = g1
(
w1

31x1 + w1
32x2 + w1

33x3 + b13
)

h4 = g1
(
w1

41x1 + w1
42x2 + w1

43x3 + b14
)

h = g1 (W1x+ b1)

y1 = g2
(
w2

11h1 + w2
12h2 + w2

13h3 + w2
14h4 + b21

)
y2 = g2

(
w2

21h1 + w2
22h2 + w2

23h3 + w2
24h4 + b22

)
y = g2 (W2h+ b2)

wkij synaptic weight between previous node j and next node i at layer k.

gk are any activation function applied to each coefficient of its input vector.

The matrices Wk and biases bk are learned from labeled training data.
21

Machine learning – ANN

Artificial neural network / Multilayer perceptron

It can have 1 hidden layer only (shallow network),

It can have more than 1 hidden layer (deep network),

each layer may have a different size, and

hidden and output layers often have different activation functions.
22

Machine learning – ANN

Artificial neural network / Multilayer perceptron

• As for the perceptron, the biases can be integrated into the weights:

Wkhk−1 + bk =
(
bk Wk

)
︸ ︷︷ ︸

W̃k

(
1

hk−1

)
︸ ︷︷ ︸
h̃k−1

= W̃kh̃k−1

• A neural network with L layers is a function of x parameterized by W̃ :

y = f(x; W̃) where W̃ = (W̃1, W̃2, . . . , W̃L)
T

• It can be defined recursively as

y = f(x; W̃) = hL, hk = gk
(
W̃kh̃k−1

)
and h0 = x

• For simplicity, W̃ will be denoted W (when no possible confusions).

23

Machine learning – ANN – Activation functions

Activation functions

Linear units: g(a) = a

y =WLhL−1 + bL

hL−1 =WL−1hL−2 + bL−1

y =WLWL−1hL−2 +WLbL−1 + bL

y =WL . . .W1x+

L−1∑
k=1

WL . . .Wk+1bk + bL

We can always find an equivalent network without hidden units,

because compositions of affine functions are affine.

Sometimes used for linear dimensionality reduction (similarly to PCA).

In general, non-linearity is needed to learn complex (non-linear)

representations of data, otherwise the NN would be just a linear function.

Otherwise, back to the problem of nonlinearly separable datasets.

24

Machine learning – ANN – Activation functions

Activation functions

Threshold units: for instance the sign function

g(a) =

{
−1 if a < 0

+1 otherwise.

or Heaviside (aka, step) activation functions

g(a) =

{
0 if a < 0

1 otherwise.

Discontinuities in the hidden layers

make the optimization really difficult.

We prefer functions that are continuous and differentiable.

25

Machine learning – ANN – Activation functions

Activation functions

Sigmoidal units: for instance the hyperbolic tangent function

g(a) = tanh a =
ea − e−a

ea + e−a
∈ [−1, 1]

or the logistic sigmoid function

g(a) =
1

1 + e−a
∈ [0, 1] -5 0 5

-2

-1

0

1

2

• In fact equivalent by linear transformations :

tanh(a/2) = 2logistic(a)− 1

• Differentiable approximations of the sign and step functions, respectively.

• Act as threshold units for large values of |a| and as linear for small values.

26

Machine learning – ANN

Sigmoidal units: logistic activation functions are used in binary classification

(class C1 vs C2) as they can be interpreted as posterior probabilities:

y = P (C1|x) and 1− y = P (C2|x)

The architecture of the network defines the shape of the separator

... ...

0

1

0 1

0

1

0 1

0

1

0 1

Separation

{x \ P (C1|x) = P (C2|x)}

Complexity/capacity of

the network

⇒
Trade-off between

generalization and

overfitting.

27

Machine learning – ANN – Activation functions

Activation functions

“Modern” units:

g(a) = max(a, 0)︸ ︷︷ ︸
ReLU

or g(a) = log(1 + ea)︸ ︷︷ ︸
Softplus

Most neural networks use ReLU

(Rectifier linear unit) – max(a, 0) –

nowadays for hidden layers, since it

trains much faster, is more expressive

than logistic function and prevents the

gradient vanishing problem (see later).

(Source: Lucas Masuch)
28

Machine learning – ANN

Neural networks solve non-linear separable problems

(Source: Vincent Lepetit)
29

Machine learning – UAT

Universal Approximation Theorem
(Hornik et al, 1989; Cybenko, 1989)

Any continuous function can be approximated by a feedforward shallow

network (i.e., with 1-hidden layer only) with a sufficient number of neurons in

the hidden layer.

• The theorem does not say how large the network needs to be.

• No guarantee that the training algorithm will be able to train the network.

30

Tasks, architectures and loss functions

Tasks, architectures and loss functions

Approximation – Least square regression

• Goal: Predict a real multivariate function.

• How: estimate the coefficients W of y = f(x;W)

from labeled training examples where labels are real vectors:

• Typical architecture:

• Hidden layer:

ReLU(a) = max(a, 0)

• Linear output:

g(a) = a

31

Tasks, architectures and loss functions

Approximation – Least square regression

• Loss: As for the polynomial curve fitting, it is standard to consider the

sum of square errors (assumption of Gaussian distributed errors)

E(W) =

N∑
i=1

||yi − di||22 =
N∑
i=1

||f(xi;W)− di||22

and look for W ∗ such that ∇E(W ∗) = 0. Recall: SSE ≡ SSD ≡ MSE

• Solution: Provided the network has enough flexibility and the size of the

training set grows to infinity

y? = f(x;W ?) = E[d|x] =
∫
dp(d|x) dd︸ ︷︷ ︸

posterior mean

32

Tasks, architectures and loss functions

Binary classification – Logistic regression

• Goal: Classify object x into class C1 or C2.

• How: estimate the coefficients W of a real function y = f(x;W) ∈ [0, 1]

from training examples with labels 1 (for class C1) and 0 (otherwise):

T = {(xi, di)}i=1..N

• Typical architecture:

• Hidden layer:

ReLU(a) = max(a, 0)

• Output layer:

logistic(x) =
1

1 + e−a

33

Tasks, architectures and loss functions

Binary classification – Logistic regression

• Loss: it is standard to consider the cross-entropy for two-classes

(assumption of Bernoulli distributed data)

E(W) = −
N∑
i=1

di log yi + (1− di) log(1− yi) with yi = f(xi;W)

and look for W ∗ such that ∇E(W ∗) = 0.

• Solution: Provided the network has enough flexibility and the size of the

training set grows to infinity

y? = f(x;W ?) = P(C1|x)︸ ︷︷ ︸
posterior probability

34

Tasks, architectures and loss functions

Multiclass classification – Multivariate logistic regression
(aka, multinomial classification)

• Goal: Classify an object x into one among K classes C1, . . . , CK .

• How: estimate the coefficients W of a multivariate function

y = f(x;W) ∈ [0, 1]K

from training examples T = {(xi,di)} where di is a 1-of-K (one-hot) code

• Class 1: di = (1, 0, . . . , 0)T if xi ∈ C1

• Class 2: di = (0, 1, . . . , 0)T if xi ∈ C2

• . . .
• Class K: di = (0, 0, . . . , 1)T if xi ∈ CK

• Remark: do not use the class index k directly as a scalar label.

35

Tasks, architectures and loss functions

Multiclass classification – Multivariate logistic regression

• Typical architecture:

• Hidden layer:

ReLU(a) = max(a, 0)

• Output layer:

softmax(a)k =
exp(ak)∑K
l=1 exp(al)

Softmax guarantees the outputs yk to be positive and sum to 1.

Generalization of the logistic sigmoid activation function.

Smooth version of winner-takes-all activation model (maxout).

(largest gets +1 others get 0).

36

Tasks, architectures and loss functions

Multiclass classification – Multivariate logistic regression

• Loss: it is standard to consider the cross-entropy for K classes

(assumption of multinomial distributed data)

E(W) = −
N∑
i=1

K∑
k=1

dik log y
i
k with yi = f(xi;W)

and look for W ∗ such that ∇E(W ∗) = 0.

• Solution: Provided the network has enough flexibility and the size of the

training set grows to infinity

y?k = fk(x;W
?) = P(Ck|x)︸ ︷︷ ︸

posterior probability

37

Machine learning – ANN

Multi-label classification:
(aka, multi-output classification)

• Goal: Classify object x into zero or several classes C1, . . . , CK .

The classes need to be non-mutually exclusive.

• How: Combination of binary-classification networks.

• Typical architecture:

• Remark: For categorical inputs, use also 1-of-K codes.

38

Backpropagation

Machine learning – ANN - Backpropagation

Learning with backpropagation

(Source: Lucas Masuch & Vincent Lepetit)
39

Machine learning – ANN – Learning

Training process

• To train a neural network over a large set of labeled data, you must

continuously compute the difference between the network’s predicted

output and the actual output.

• This difference is measured by the loss E, and the process for training a

net is known as backpropagation, or backprop.

• During backprop, weights and biases are tweaked slightly until the lowest

possible loss is achieved.

−→ Optimization: look for ∇E = 0

• The gradient is an important aspect of this process, as a measure of how

much the loss changes with respect to a change in a weight or bias value.

(Source: Caner Hazırbaş)

40

Machine learning – ANN – Learning

Training process

(Source: Lucas Masuch)
41

Machine learning – ANN – Optimization

Objective: min
W

E(W) ⇒ ∇E(W) =
(
∂E(W)
∂W1

. . . ∂E(W)
∂WL

)T
= 0

Loss functions: recall that classical loss functions are

• Square error (for regression: dk ∈ R, yk ∈ R)

E(W) =
1

2

∑
(x,d)∈T

||y − d||22 =
1

2

∑
(x,d)∈T

∑
k

(yk − dk)2

• Cross-entropy (for multi-class classification: dk ∈ {0, 1}, yk ∈ [0, 1])

E(W) = −
∑

(x,d)∈T

∑
k

dk log yk

Solution: no closed-form solutions ⇒ use gradient descent. What is it?

42

Machine learning – ANN – Optimization – Gradient descent

An iterative algorithm trying to find a minimum of a real function.

Gradient descent

• Let F be a real function, lower bounded and twice-differentiable such that:

||∇2F (x)︸ ︷︷ ︸
Hessian matrix of F

||2 6 L, for some L > 0.

• Then, whatever the initialization x0, if 0 < γ < 2/L, the sequence

xt+1 = xt− γ∇F (xt)︸ ︷︷ ︸
direction of greatest descent

,

converges to a stationary point x? (i.e., it cancels the gradient)

∇F (x?) = 0 .

• The parameter γ is called the step size (or learning rate in ML field).

• A too small step size γ leads to slow convergence.

43

Machine learning – ANN – Optimization – Gradient descent

Gradient descent example

Example (1d quadratic loss)

• Consider: F (x) = 1
2
(x− y)2

• We have: F ′(x) = x− y
• And: F ′′(x) = 1

• Then: L = supx |F ′′(x)| = 1

• Thus: The range for γ is 0 < γ < 2/L = 2

• And: xt+1 = xt − γ(xt − y) converges towards x?, whatever x0,

such that F ′(x?) = 0⇒ x? = y

Question: what is the best value for γ?

44

Machine learning – ANN – Optimization – Gradient descent

Gradient descent example

Example (1d quartic loss)

• Consider: F (x) = 1
4
(x− y)4

• We have: F ′(x) = (x− y)3

• And: F ′′(x) = 3(x− y)2

• Then: L = supx |F ′′(x)| =∞
• Thus: There are no γ satisfying 0 < γ < 2/L

• And: xt+1 = xt − γ(xt − y)3, for γ > 0, may diverge,

oscillate forever or converge to the solution y.

Convergence can be obtained for some specific choice

of γ and initialization x0.

45

Machine learning – ANN – Optimization – Gradient descent

These two curves cross at x? such that ∇F (x?) = 0

46

Machine learning – ANN – Optimization – Gradient descent

Here γ is small: slow convergence

46

Machine learning – ANN – Optimization – Gradient descent

γ a bit larger: faster convergence

46

Machine learning – ANN – Optimization – Gradient descent

γ ≈ 1/L even larger: around fastest convergence

46

Machine learning – ANN – Optimization – Gradient descent

γ a bit too large: convergence slows down

46

Machine learning – ANN – Optimization – Gradient descent

γ too large: convergence too slow again

46

Machine learning – ANN – Optimization – Gradient descent

γ > 2/L: divergence

47

Machine learning – ANN – Optimization – Gradient descent

Gradient descent for convex function

• If moreover F is convex

F (λx1 + (1− λ)x2) 6 λF (x1) + (1− λ)F (x2), ∀x1, x2, λ ∈ [0, 1] ,

then, the gradient descent converges towards a global minimum

x? ∈ argmin
x

F (x).

• For 0 < γ < 2/L, the sequence |F (xk)− F (x?)| decays in O(1/k).

• NB: All stationary points are global minima (not necessarily unique).

48

Machine learning – ANN – Optimization – Gradient descent

One dimension

Two dimensions

*

*

*

*

49

Machine learning – ANN – Optimization

Let’s start with a single artificial neuron

Example ((Batch) Perceptron algorithm)

• Model: y = sign〈w, x〉

• Loss: E(w) = −
∑

(x,d)∈T
st y 6=d

d× 〈w, x〉

• Gradient: ∇E(w) = −
∑

(x,d)∈T
st y 6=d

d× x

• Gradient descent: wt+1 ← wt + γ
∑

(x,d)∈T
st yt 6=d

d× x

Convex or non-convex?

50

Machine learning – ANN – Optimization

Let’s start with a single artificial neuron

Example ((Batch) ADALINE)

• Model: y = 〈w, x〉

• Loss: E(w) =
1

2

∑
(x,d)∈T

(〈w, x〉 − d)2︸ ︷︷ ︸
=d2+wTxxTw−2dwTx

• Gradient: ∇E(w) =
∑

(x,d)∈T

x(xTw︸ ︷︷ ︸
y

−d)

• Gradient descent: wt+1 ← wt + γ
∑

(x,d)∈T

(d− yt)x

Convex or non-convex?

If enough training samples: lim
t→∞

wt =
(∑

(x,d)∈T

xxT

︸ ︷︷ ︸
Hessian

)−1(∑
(x,d)∈T

dx
)

51

Machine learning – ANN – Optimization

Let’s start with a single artificial neuron

Example ((Batch) ADALINE)

• Model: y = 〈w, x〉

• Loss: E(w) =
1

2

∑
(x,d)∈T

(〈w, x〉 − d)2︸ ︷︷ ︸
=d2+wTxxTw−2dwTx

• Gradient: ∇E(w) =
∑

(x,d)∈T

x(xTw︸ ︷︷ ︸
y

−d)

• Gradient descent: wt+1 ← wt + γ
∑

(x,d)∈T

(d− yt)x

Convex or non-convex?

If enough training samples: lim
t→∞

wt =
(∑

(x,d)∈T

xxT

︸ ︷︷ ︸
Hessian

)−1(∑
(x,d)∈T

dx
)

51

Machine learning – ANN – Optimization

Back to our optimization problem

In our case W 7→ E(W) is non-convex ⇒ No guarantee of convergence.

Convergence will depend on

{ • the initialization,

• the step size γ.

Because of this:

• Normalizing each data point x in the range [−1,+1] is important to

control for the Hessian → the stability and the speed of the algorithm,

• The activation functions and the loss should be chosen to have a second

derivative smaller than 1 (when combined),

• The initialization should be random with well chosen variance

(we will come back to this later),

• If all of these are satisfied, we can generally choose γ ∈ [.001, 1].

52

Machine learning – ANN – Optimization

Influence of the step parameter in non-convex cases (learning rate)

53

Machine learning – ANN – Optimization

Back to our optimization problem

In our case W 7→ E(W) is non-convex ⇒ No guarantee of convergence.

Even if so, the limit solution depends on:

{ • the initialization,

• the step size γ.

Nevertheless, really good minima or saddle points are reached in practice by

W t+1 ←W t − γ∇E(W t), γ > 0

Gradient descent can be expressed coordinate by coordinate as:

wt+1
i,j ← wti,j − γ

∂E(W t)

∂wti,j

for all weights wi,j linking a node j to a node i in the next layer.

⇒ The algorithm to compute
∂E(W)

∂wi,j
for ANNs is called backpropagation.

54

Machine learning – ANN – Optimization

Backpropagation: computation of
∂E(W)

∂wi,j

Feedforward least square regression context

• Model: Feed-forward neural network.

(for simplicity without bias)

• Loss function: E(W) =
1

2

∑
(x,d)∈T

∑
k

(yk − dk)2

We have: E(W) =
∑

(x,d)∈T

∑
k

1

2
(yk − dk)2︸ ︷︷ ︸

ek

Apply linearity:
∂E(W)

∂wi,j
=

∑
(x,d)∈T

∑
k

∂ek
∂wi,j

55

Machine learning – ANN – Optimization

1. Case where wij is a synaptic weight for the output layer

• j: neuron in the last hidden layer

• hj : response of hidden neuron j

• wi,j : synaptic weight between j and i

• yi: response of output neuron i

yi = g (ai) with ai =
∑
j

wi,jhj

Apply chain rule:
∂E(W)

∂wi,j
=
∑

(x,d)∈T

∑
k

∂ek
∂wi,j

=
∑

(x,d)∈T

∑
k

∂ek
∂yi

∂yi
∂ai

∂ai
∂wi,j

56

Machine learning – ANN – Optimization

1. Case where wij is a synaptic weight for the output layer

ek =
1

2
(yk − dk)2 ⇒ ∂ek

∂yi
=

{
yi − di if k = i

0 otherwise

yi = g(ai) ⇒ ∂yi
∂ai

= g′(ai),

ai =
∑
j′

wi,j′hj′ ⇒ ∂ai
∂wi,j

= hj

⇒ ∂E(W)

∂wi,j
=

∑
(x,d)∈T

∑
k

∂ek
∂yi

∂yi
∂ai

∂ai
∂wi,j

=
∑

(x,d)∈T

(yi − di)g′(ai)︸ ︷︷ ︸
δi

hj

=
∑

(x,d)∈T

δihj where δi =
∑
k

∂ek
∂ai

57

Machine learning – ANN – Optimization

2. Case where wij is a synaptic weight for a hidden layer

• j: neuron in the previous hidden layer

• hj : response of hidden neuron j

• wi,j : synaptic weight between j and i

• hi: response of hidden neuron i

hi = g (ai) with ai =
∑
j

wi,jhj

Apply chain rule:
∂E(W)

∂wi,j
=
∑

(x,d)∈T

∑
k

∂ek
∂wi,j

=
∑

(x,d)∈T

∑
k

∂ek
∂hi

∂hi
∂ai

∂ai
∂wi,j

=
∑

(x,d)∈T

∑
k

(∑
l

∂ek
∂al

∂al
∂hi

)
∂hi
∂ai

∂ai
∂wi,j

=
∑

(x,d)∈T

∑
l

(∑
k

∂ek
∂al

)
︸ ︷︷ ︸

δl

∂al
∂hi

∂hi
∂ai

∂ai
∂wi,j

58

Machine learning – ANN – Optimization

2. Case where wij is a synaptic weight for a hidden layer

al =
∑
i′

wl,i′hi′ ⇒ ∂al
∂hi

= wl,i

hi = g(ai) ⇒ ∂hi
∂ai

= g′(ai),

ai =
∑
j′

wi,j′hj′ ⇒ ∂aj
∂wi,j

= hj

⇒ ∂E(W)

∂wi,j
=

∑
(x,d)∈T

∑
l

δl
∂al
∂hi

∂hi
∂ai

∂ai
∂wi,j

=
∑

(x,d)∈T

(∑
l

wl,iδl

)
g′(ai)︸ ︷︷ ︸

δi

hj

=
∑

(x,d)∈T

δihj

59

Machine learning – ANN – Optimization

Backpropagation algorithm
(Werbos, 1974 & Rumelhart, Hinton and Williams, 1986)

∂E(W)

∂wi,j
=

∑
(x,d)∈T

δihj where hj = xj if j is an input node

where δi = g′(ai)×

 yi − di if i is the output node∑
l

wl,iδl otherwise

For all input x and desired output d

• Forward step:

→ compute the response (hj , ai and yi) of all neurons,

→ start from the first hidden layer and pursue towards the output one.

• Backward step:

→ Retropropagate the error (δi) from the output layer to the first layer.

Update wi,j ← wi,j − γ
∑

δihj , and repeat everything until convergence.
60

Machine learning – ANN – Optimization

Backpropagation algorithm with matrix-vector form

Easier to use matrix-vector notations for each layer:

(k denotes the layer)

∇WkE(W) = δkh
T
k−1 where h0 = x

where δk =

[
∂g(ak)

∂ak

]T
×

{
y − d if k is an output layer

W T
k+1δk+1 otherwise

• x: matrix with all training input vectors in column,

• d: matrix with corresponding desired target vectors in column,

• y: matrix with all predictions in column,

• ak =Wkhk−1: matrix with all weighted sums in column,

• hk = g(ak): matrix with all hidden outputs in column,

• Wk: matrix of weights at layer k,

61

Machine learning – ANN – Optimization

Backpropagation algorithm

Forward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Forward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Forward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Forward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Forward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Forward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Forward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Forward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Error evaluation

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Backward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Backward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Backward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Backward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Backward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Backward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Backward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Backward phase

62

Machine learning – ANN – Optimization

Backpropagation algorithm

Backward phase

62

Machine learning – ANN – Optimization

Case where g is the logistic sigmoid function

• Recall that the logistic sigmoid function is given by:

g(a) =
1

1 + e−a
=

1

u(a)
where u(a) = 1 + e−a

• We have:

u′(a) = −e−a

• Then, we get

g′(a) =
−u′(a)
u(a)2

=
e−a

(1 + e−a)2
=

1 + e−a

(1 + e−a)2
− 1

(1 + e−a)2

=
1

1 + e−a
− 1

(1 + e−a)2
=

1

1 + e−a

(
1− 1

1 + e−a

)
= g(a) (1− g(a))

63

Machine learning – ANN – Optimization

What if g is non-differentiable?
For instance: g(a) = ReLU(a) = max(a, 0)

• ReLU is continuous and differentiable almost everywhere:

∂max(a, 0)

∂a
=

1 if a > 0

0 if a < 0

undefined otherwise

• Gradient descent can handle this case with a simple modification:

∂max(a, 0)

∂a
=

{
1 if a > 0

0 if a 6 0

• When g is convex, this is called a sub-gradient, and gradient descent is

called sub-gradient descent.

64

Machine learning – ANN – Optimization

Let’s try to learn the x-or function

import numpy as np

Training set

x = np.array ([[0,0], [0,1], [1,0], [1 ,1]]).T

d = np.array([0, +1, +1, 0]).T

Initialization for a 2 layer feedforward network

b1 = np.random.rand(2, 1)

W1 = np.random.rand(2, 2)

b2 = np.random.rand(1, 1)

W2 = np.random.rand(1, 2)

Activation functions and their derivatives

def g1(a): r e t u r n a * (a > 0) # ReLU

def g1p(a): r e t u r n 1 * (a > 0)

def g2(a): r e t u r n a # Linear

def g2p(a): r e t u r n 1

65

Machine learning – ANN – Optimization

Let’s try to learn the x-or function

import numpy as np

Training set

x = np.array ([[0,0], [0,1], [1,0], [1 ,1]]).T

d = np.array([0, +1, +1, 0]).T

Initialization for a 2 layer feedforward network

b1 = np.random.rand(2, 1)

W1 = np.random.rand(2, 2)

b2 = np.random.rand(1, 1)

W2 = np.random.rand(1, 2)

Activation functions and their derivatives

def g1(a): r e t u r n a * (a > 0) # ReLU

def g1p(a): r e t u r n 1 * (a > 0)

def g2(a): r e t u r n 1 / (1 + np.exp(-a)) # Logistic

def g2p(a): r e t u r n g2(a) * (1 - g2(a))

65

Machine learning – ANN – Optimization

Let’s try to learn the x-or function

Remark 1: dealing with the

bias is similar

Remark 2: using cross-entropy

is simple too

gamma = .01 # step parameter (learning rate)

f o r t i n range (0, 10000):

Forward phase

a1 = W1.dot(x)

h1 = g1(a1)

a2 = W2.dot(h1)

y = g2(a2)

Error gradient evaluation

e = y - d

Backward phase

delta2 = g2p(a2) * e

delta1 = g1p(a1) * W2.T.dot(delta2)

gradient update

W2 = W2 - gamma * delta2.dot(h1.T)

W1 = W1 - gamma * delta1.dot(x.T)

_

_

66

Machine learning – ANN – Optimization

Let’s try to learn the x-or function

Remark 1: dealing with the

bias is similar

Remark 2: using cross-entropy

is simple too

gamma = .01 # step parameter

f o r t i n range (0, 10000):

Forward phase

a1 = W1.dot(x) + b1

h1 = g1(a1)

a2 = W2.dot(h1) + b2

y = g2(a2)

Error gradient evaluation

e = y - d

Backward phase

delta2 = g2p(a2) * e

delta1 = g1p(a1) * W2.T.dot(delta2)

gradient update

W2 = W2 - gamma * delta2.dot(h1.T)

W1 = W1 - gamma * delta1.dot(x.T)

b2 = b2 - gamma * delta2.sum(axis=1, keepdims=True)

b1 = b1 - gamma * delta1.sum(axis=1, keepdims=True)

66

Machine learning – ANN – Optimization

Let’s try to learn the x-or function

Remark 1: dealing with the

bias is similar

Remark 2: using cross-entropy

is simple too

gamma = .01 # step parameter

f o r t i n range (0, 10000):

Forward phase

a1 = W1.dot(x) + b1

h1 = g1(a1)

a2 = W2.dot(h1) + b2

y = g2(a2)

Error gradient evaluation

e = -d / y + (1 - d) / (1 - y)

Backward phase

delta2 = g2p(a2) * e

delta1 = g1p(a1) * W2.T.dot(delta2)

gradient update

W2 = W2 - gamma * delta2.dot(h1.T)

W1 = W1 - gamma * delta1.dot(x.T)

b2 = b2 - gamma * delta2.sum(axis=1, keepdims=True)

b1 = b1 - gamma * delta1.sum(axis=1, keepdims=True)

66

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 1

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 11

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 21

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 31

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 41

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 51

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 61

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 71

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 81

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 91

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 101

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 201

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 301

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 401

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 501

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 601

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 701

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 801

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 901

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 1001

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 2001

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 3001

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 4001

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 5001

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 6001

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 7001

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 8001

67

Machine learning – ANN – Optimization

Let’s see how it works

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 9001

67

Machine learning – ANN – Optimization

Comparisons – different initializations & activations

Success (Global minima)

L
in

ea
r

o
u

tp
u

t
L

o
g

is
ti

c
o

u
tp

u
t

68

Machine learning – ANN – Optimization

Comparisons – different initializations & activations

Failures (Local minima or saddle points)

L
in

ea
r

o
u

tp
u

t
L

o
g

is
ti

c
o

u
tp

u
t

69

Machine learning – ANN – Optimization

The 1990s view of ANN and back-propagation

Advantages

• Universal approximators,

• May be very accurate.

Drawbacks

• Black box models (very difficult to interpret).

• The learning time does not scale well

• it was very slow in networks with multiple hidden layers.

• It got stuck at local optima or saddle points

• these can be nevertheless often surprisingly good.

• All global minima do not have the same quality (generalization error)

• strong variations in prediction errors on different testing datasets.

70

Support Vector Machine

Machine learning – Support Vector Machine

Support Vector Machine

(Source: Lucas Masuch & Vincent Lepetit)
71

Machine learning – Support Vector Machine

Support Vector Machine
(Vapnik, 1995)

• Very successful methods in the mid-90’s.

• Developed for binary classification.

• Clever type of perceptron.

• Based on two major ideas

1 large margin,

2 kernel trick.

Many NNs researchers switched to SVMs in the 1990s

because they (used to) work better.

72

Machine learning – Support Vector Machine

Shattering points with oriented hyperplanes

• Goal: Build hyperplanes that separate points in two classes,

• Question: Which is the best separating line?

Remember, hyperplane: 〈w, x〉+ b = 0

73

Machine learning – Support Vector Machine

Classification margin

• Signed distance from an example to the separator: r =
〈x, w〉+ b

||w||
• Examples closest to the hyperplane are support vectors.

• Margin ρ is the distance between the separator and the support vector(s).

• Is this one good?

• Consider two testing samples,

where are they assigned?

• This separator may have large

generalization error.

74

Machine learning – Support Vector Machine

Classification margin

• Signed distance from an example to the separator: r =
〈x, w〉+ b

||w||
• Examples closest to the hyperplane are support vectors.

• Margin ρ is the distance between the separator and the support vector(s).

• Is this one good?

• Consider two testing samples,

where are they assigned?

• This separator may have large

generalization error.

74

Machine learning – Support Vector Machine

Classification margin

• Signed distance from an example to the separator: r =
〈x, w〉+ b

||w||
• Examples closest to the hyperplane are support vectors.

• Margin ρ is the distance between the separator and the support vector(s).

• Is this one good?

• Consider two testing samples,

where are they assigned?

• This separator may have large

generalization error.

74

Machine learning – Support Vector Machine

Classification margin

• Signed distance from an example to the separator: r =
〈x, w〉+ b

||w||
• Examples closest to the hyperplane are support vectors.

• Margin ρ is the distance between the separator and the support vector(s).

• Is this one good?

• Consider two testing samples,

where are they assigned?

• This separator may have large

generalization error.

74

Machine learning – Support Vector Machine

Largest margin = Support Vector Machine

• Maximizing the margin reduces generalization error (see, PAC learning).

• Then, there are necessary support vectors on both sides of the hyperplane.

• Only support vectors are important ⇒ other examples can be discarded.

Poor separation Optimal separation

75

Machine learning – Support Vector Machine

Training

• As for neural networks, the parameters w and b are obtained by optimizing

a loss function (the margin).

• What is the formula for the margin?

• Training dataset: feature vectors xi, targeted class di ∈ {−1,+1}
• Assume the training samples to be linearly separable,

i.e., there exist w and b such that,{
〈xi, w〉+ b > +0 if di = +1

〈xi, w〉+ b < −0 if di = −1

di(〈xi, w〉+ b) > 1

Then: |〈xi, w〉+ b| > 1

76

Machine learning – Support Vector Machine

Training

• As for neural networks, the parameters w and b are obtained by optimizing

a loss function (the margin).

• What is the formula for the margin?

• Training dataset: feature vectors xi, targeted class di ∈ {−1,+1}
• Assume the training samples to be linearly separable,

or, equivalently, there exist w, b and ζ > 0 such that,{
〈xi, w〉+ b > +ζ if di = +1

〈xi, w〉+ b 6 −ζ if di = −1

di(〈xi, w〉+ b) > 1

Then: |〈xi, w〉+ b| > 1

76

Machine learning – Support Vector Machine

Training

• As for neural networks, the parameters w and b are obtained by optimizing

a loss function (the margin).

• What is the formula for the margin?

• Training dataset: feature vectors xi, targeted class di ∈ {−1,+1}
• Assume the training samples to be linearly separable,

or, equivalently, there exist another w and b such that{
〈xi, w〉+ b > +1 if di = +1

〈xi, w〉+ b 6 −1 if di = −1

di(〈xi, w〉+ b) > 1

Then: |〈xi, w〉+ b| > 1

76

Machine learning – Support Vector Machine

Training

• As for neural networks, the parameters w and b are obtained by optimizing

a loss function (the margin).

• What is the formula for the margin?

• Training dataset: feature vectors xi, targeted class di ∈ {−1,+1}
• Assume the training samples to be linearly separable,

or, equivalently, there exist another w and b such that{
〈xi, w〉+ b > +1 if di = +1

〈xi, w〉+ b 6 −1 if di = −1

di(〈xi, w〉+ b) > 1

Then: |〈xi, w〉+ b| > 1

76

Machine learning – Support Vector Machine

Training

• For support vectors, the inequality can be forced to be an equality

|〈xi, w〉+ b| = 1

• Then, the distance between any support vector and the hyperplane is

|r| = |〈x
i, w〉+ b|
||w|| =

1

||w||

• So, the margin is (by definition)

ρ = |r| = 1

||w||

• Maximizing the margin is then equivalent to minimizing ||w||2, provided

the hyperplane (w, b) separates the data.

77

Machine learning – Support Vector Machine

Training

• Therefore, the problem can be recast as

min
w,b

1

2
||w||2 subject to di(〈xi, w〉+ b) > 1, for all i.

⇒ Quadratic (convex) optimization problem subject to linear constraints,

⇒ No local minima! Only a single global one.

Equivalent formulation:

min
w,b

E(w, b)

where E(w, b) =

{
1
2
||w||2 if di(〈xi, w〉+ b) > 1, for all i

+∞ otherwise

78

Machine learning – Support Vector Machine

Training

min
w,b

E(w, b)

where E(w, b) =

{
1
2
||w||2 if di(〈xi, w〉+ b) > 1, for all i

+∞ otherwise

• We can use the techniques of Lagrange multipliers:

1 Introduce a Lagrange multiplier αi > 0 for each constraint.

2 Let α = (α1, α2, . . .)
T be the vector of Lagrange multipliers.

3 Define the (primal) function as

LP (w, b,α) =
1

2
||w||2 −

∑
i

αi (di(〈xi, w〉+ b)− 1)︸ ︷︷ ︸
inequality constraint

4 Solve the saddle point problem

E(w, b) = max
α
LP (w, b,α) ⇒ min

w,b
E(w, b) = min

w,b
max
α
LP (w, b,α)

79

Machine learning – Support Vector Machine

Training

• When the original objective-function is convex (and only then), we can

interchange the minimization and maximization

min
w,b

max
α
LP (w, b,α) = max

α
min
w,b
LP (w, b,α)

• The following is called dual problem

LD(α) = min
w,b

LP (w, b,α) = 1

2
||w||2︸ ︷︷ ︸
〈w,w〉

−
∑
i

αi(di(〈xi, w〉+ b)− 1)

• For a fixed α, the minimum is achieved by simultaneously canceling the

gradients with respect to w and b

∇w LP (w, b,α) = 0⇒ w −
∑
i

αidixi = 0⇒ w =
∑
i

αidixi

and ∇b LP (w, b,α) = 0⇒
∑
i

αidi = 0

80

Machine learning – Support Vector Machine

Training

The dual is obtained by plugging these equations in LP (w, b,α):

LD(α) =
1

2
||w||2︸ ︷︷ ︸
〈w,w〉

−
∑
i

αi(di(〈xi, w〉+ b)− 1)

=
1

2
〈
∑
i

αidixi,
∑
j

αjdjxj〉 −
∑
i

αidi(〈xi,
∑
j

αjdjxj〉+ b) +
∑
i

αi

=
1

2

∑
i

∑
j

αiαjdidj〈xi, xj〉 −
∑
i

∑
j

αiαjdidj〈xi, xj〉+ b
∑
i

αidi︸ ︷︷ ︸
=0

+
∑
i

αi

=
∑
i

αi − 1

2

∑
i

∑
j

αiαjdidj〈xi, xj〉

81

Machine learning – Support Vector Machine

SVM training algorithm

1 Maximize the dual (e.g., using coordinate projected gradient descent):

max
α

{
LD(α) =

∑
i

αi − 1

2

∑
i

∑
j

αiαjdidj〈xi, xj〉

}
subject to αi > 0 and

∑
i

αidi = 0, for all i.

2 Each non-zero αi indicates that corresponding xi is a support vector.

3 Deduce the parameters from these support vectors (s.v)

w =
∑
i (s.v.)

αidixi and b = di −
∑
j (s.v.)

αjdj〈xi, xj〉 for any s.v. i

• The dual is in practice more efficient to solve than the original problem,

and it allows identifying the support vectors.

• It only depends on the dot products 〈xi, xj〉 between all training points.

82

Machine learning – Support Vector Machine

SVM classification algorithm

• Given the parameters of the hyperplane w and b,

the SVM classifies a new sample x as

y = 〈w, x〉+ b ≶ 0

(same as for the perceptron).

• But (very important), this can be reformulated as

y =
∑
i (s.v.)

αidi〈x, xi〉+ b

which only depends on the dot products 〈x, xi〉 between x and the

support vectors – we will return to this later.

83

Machine learning – Support Vector Machine

Non-separable case

What if the training set is not linearly separable?

The optimization problem does not admit solutions.

Solution: allows the system to make errors εi.

84

Machine learning – Support Vector Machine

Non-separable case

What if the training set is not linearly separable?

The optimization problem does not admit solutions.

Solution: allows the system to make errors εi.

84

Machine learning – Support Vector Machine

Non-separable case – Soft-margin SVM

• Just relax the constraints by permitting errors to some extent

min
w,b,ε

1

2
||w||2 + C

∑
i

εi

subject to di(〈xi, w〉+ b) > 1− εi and εi > 0, for all i.

• Quantities εi are called slack variables.

• The parameter C > 0 is chosen by the user and controls overfitting.

• The dual problem becomes

max
α

{
LD(α) =

∑
i

αi − 1

2

∑
i

∑
j

αiαjdidj〈xi, xj〉

}
subject to 0 6 αi 6 C and

∑
i

αidi = 0, for all i.

and does not depend on the slack variables εi.

85

Machine learning – Support Vector Machine

Linear SVM – Overview

• SVM finds the separating hyperplane maximizing the margin.

• Soft-margin SVM: trade-off between large margin and errors.

• These optimal hyperplanes are only defined in terms of support vectors.

• Lagrangian formulation allows identifying the support vectors with

non-zero Lagrange multipliers αi.

• The training and classification algorithms both depend only on dot

products between data points.

So far, the SVM is a linear separator (the best in some sense).

But, it cannot solve non-linear problems (such as xor),

as done by multi-layer neural networks.

86

Machine learning – Support Vector Machine

Non-linear SVM – Overview

What happens if the separator is non-linear?

87

Machine learning – Support Vector Machine

Non-linear SVM – Map to higher dimensions

Here: (x1, x2) 7→ (x21, x
2
2,
√
2x1x2)

The input space (original feature space) can always be mapped to some

higher-dimensional feature space where the training data set is linearly

separable, via some (non-linear) transformation x→ ϕ(x).

88

Machine learning – Support Vector Machine

Non-linear SVM – Map to higher dimensions

Replace all occurrences of x by ϕ(x), for the training step

LD(α) =
∑
i

αi − 1

2

∑
i

∑
j

αiαjdidj〈ϕ(xi), ϕ(xj)〉

and the classification step

y =
∑
i (s.v.)

αidi〈ϕ(x), ϕ(xi)〉+ b

• May require a feature space of really high (even infinite) dimension.

• In this case, manipulating ϕ(x) might be tough, impossible, or lead to

intense computation: complexity depends on the feature space dimension.

89

Machine learning – Support Vector Machine

Non-linear SVM – Kernel trick

• SVMs do not care about feature vectors ϕ(x).
• They rely only on dot products between them. Define

K(x,x′) = 〈ϕ(x), ϕ(x′)〉

• K is called kernel function: dot product in a higher dimensional space.
• Even if ϕ(x) is tough to manipulate, K(x,x′) can be rather simple.

• Mercer’s theorem: K continuous and symmetric positive semi-definite

(i.e., the matrix K = (K(xi,xj))i,j is symmetric positive semi-definite for

all finite sequences x1, . . . ,xn) then there exists a mapping ϕ such that

K(x,x′) = 〈ϕ(x), ϕ(x′)〉

• We do not even need to know ϕ, pick a continuous symmetric positive

semi-definite kernel K and use it instead of dot products.

90

Machine learning – Support Vector Machine

Non-linear SVM – Kernel trick

• Replace all occurrences of 〈x, x′〉 by K(x,x′), for the training step

LD(α) =
∑
i

αi − 1

2

∑
i

∑
j

αiαjdidjK(xi,xj)

and the classification step

y =
∑
i (s.v.)

αidiK(x,xi) + b

• Python implementation available in scikit-learn.

Complexity depends on the input space dimension.

91

Machine learning – Support Vector Machine

Non-linear SVM – Standard kernels

• Linear: K(x,x′) = 〈x, x′〉

• Polynomial: K(x,x′) = (γ〈x, x′〉+ β)p

• Gaussian: K(x,x′) = exp
(
−γ||x− x′||2

)
−→ Radial basis function (RBF) network.

• Sigmoid: K(x,x′) = tanh(γ〈x, x′〉+ β)

In practice: K is usually chosen by trial and error.

A linear SVM is an optimal perceptron but what is a non-linear SVM?
92

Machine learning – Support Vector Machine

Non-linear SVMs are shallow ANNs

Consider: K(x,x′) = tanh(γ〈x, x′〉+ β)

We get: y =
∑
i (s.v.)

αidiK(x,xi) + b ← SVM

y =
∑
i (s.v.)

αidi tanh(γ〈x, xi〉+ β) + b

y = 〈w2, g(W1x+ b1)〉+ b2 ← Shallow ANN

where W1 = γ
(
x1 x2 . . .

)
︸ ︷︷ ︸

support vectors

T

, b1 = β1,

w2 =
(
α1d1 α2d2 . . .

)
︸ ︷︷ ︸

Lagrange multipliers and desired
class of support vectors

, b2 = b, and g = tanh .

The number of support vectors is the number of hidden units.

93

Machine learning – Support Vector Machine

Difference between SVMs and ANNs

• SVM:

• based on stronger mathematical theory,

• avoid over-fitting,

• not trapped in local-minima,

• works well with fewer training samples.

• But limited to binary classification

→ extensions to regression in (Vapnik et al., 1997)

→

and PCA in (Schölkopf et al, 1999).

• Tuning SVMs is tough:

→ selecting a specific kernel (feature space) and

→

regularization parameter C done by trial and errors.

94

Machine learning – Support Vector Machine

Similarity between SVMs and ANNs
(in binary classification)

• Similar formalisms:

y = 〈w, ϕ(x)〉+ b ≶ 0 ?

SVM

• ϕ(x): feature vector,

• ϕ: non-linear function implicitly

defined by the kernel K,

• UAT: ϕ could be approximated by

a shallow NN.

ANN

• ϕ(x): output of the last hidden layer,

• ϕ: non-linear recursive function

learned by backpropagation,

• the output of hidden layers can be

interpreted as feature vectors.

95

Machine learning – Support Vector Machine

Similarity between SVMs and ANNs
(in binary classification)

• Both are linear separators in a suitable feature space,

• Mapping to the feature space is obtained by a non-linear transform,

• For SVM, the non-linear transform is chosen by the user.

Instead, ANNs learn it with backpropagation.

• ANNs can also do it recursively layer by layer:

→ this is called a feature hierarchy,

→ this is the foundation of deep learning.

96

Machine learning – Deep learning

What’s next?

(Source: Lucas Masuch & Vincent Lepetit)
97

Questions?

Next class: Introduction to deep learning

Sources, images courtesy and acknowledgment

• P. Gallinari

• C. Hazırbaş

• A. Horodniceanu

• V. Lepetit

• L. Masuch

• A. W. Moore

• A. O. Puig

• M. Welling

97

