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Detection, Segmentation, Captioning

Recap of CNNs for classification

• CNNs are ANNs using convolutions instead of full matrix-vector products,

• Use pooling layers between layers to increase their effective receptive fields,

• Successively reduce spatial dimensions until the tensor is (almost) flat,

• A classifier (generally 3 layers ANNs) is finally plugged after this,

• Various architectures: Inception module, ResNet, DenseNet, . . .
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Detection, Segmentation, Captioning

Principle tasks

Image captioning: ’Animals posing for picture.’
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Detection, Segmentation, Captioning

Influence of Deep Learning

Multi-object detection challenge
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Classification + localization

Classification + localization

Localization: find the bounding box (bbox) around the (single) object.

Regression problem: predict 4 values encoding the bbox size and location,

usually: left (x), top (y), width (w), height (h).
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Classification + localization

Classification + localization: ImageNet

• 1,000 classes (same as classification),

• Each image has one bounding box,

• About 800 images per class,

• Algorithm produces 5 classes,

• Evaluation metric: at least one correct

class prediction and one bbox with at

least .5 Intersection-over-Union (IoU).

(Source: Ric Poirson)
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Classification + localization

Intersection-over-Union (IoU)
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Classification + localization

Naive approach

• Choose a classifier (AlexNet, VGG, GoogLeNet, . . . ),

• Extract all possible bounding boxes,

• Rescale their contents to the size of the network image input,

• Classify each of them,

• Select the one with the maximum confidence level.

Probably works great, but impractical. It would be too slow:

→ Need to test many positions and scales,

and use a computationally demanding classifier (CNN).
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Classification + localization

Localization as regression

• Classification

• Input: image
• Output: class labels
• Loss: cross-entropy

• Localization

• Input: image
• Output: bounding box (x, y, w, h)
• Loss: MSE / `22 error

• Classification+Localization: do both

(Source: Ric Poirson)
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Classification + localization

Simple recipe for Classification + Localization

• Step 1: Train/download a classification model (AlexNet, ResNet, . . . ),

• Step 2: Attach a new fully connected regression head,

• Step 3: Train the regression head only with SGD and `22 loss,

• Step 4: At test time, use both heads.
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Classification + localization

What to learn exactly?

• Classification head:

1-of-K code with confidence levels (0, 1)

• Regression head:

• Class agnostic:

4 numbers (one bounding box)

• Class specific:

K × 4 (one box per class)

Being agnostic doesn’t work as well:

the strategy to find the bounding-box must depend on the class.
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Classification + localization

Overfeat (Sermanet et al., 2013)

Tweak only the weights of the bbox branch:

E(Wbbox) =
∑

(x,d,x,y,w,h)∈T

(x− x̂d)2 + (y − ŷd)2 + (w − ŵd)
2 + (h− ĥd)

2
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Classification + localization

Overfeat (Sermanet et al., 2013)

The softmax layer provides the confidence level of each bounding box.

Training: augment the data by random shifts and multi-scales, but keep only

the ones with 50% overlap with the desired bounding-box.

Testing: use multi-scale sliding windows and a greedy merge strategy.
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Classification + localization

Overfeat – Sliding windows
How to get classification results for all sliding windows

without running the classifier multiple times?

1. Convert FC layers to 1× 1 convolutions and fine tune

The size of the sliding window will be the network input size.

This is called a Fully Convolutional Network (FCN).
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Classification + localization

Overfeat – Sliding windows

2. Apply the network on the larger image

As all layers are convolutions and pooling, the network parameters do not

depend anymore on the input image size. If a larger image is given, multiple

localized answers will be produced with a smaller computational overhead

(the stride at which the window slides depends on the pooling layers).
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Classification + localization

Overfeat – Greedy merge strategy

1 Use the network to extract a set of candidate bounding boxes for each

scale and sliding window,

2 Look for the two closest bounding boxes: distances to their intersection.

3 Merge them by averaging their coordinates and scores,

4 Update the set of candidates by replacing them by their merged version,

5 Go back to Step 2 until one bounding box remains.

→ Winner ILSVRC LOC 2013!
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Classification + localization

Classification + localization – ImageNet results

Most recent techniques use a classifier in predefined windows.

These techniques aim directly at solving

the multi-object detection task.
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(Multi-)Object detection

Object detection

• Goal: detect and localize all objects of the scene,

• Problem: need to test many positions and scales,

• Solution: only look at a tiny subset of possible positions.
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(Multi-)Object detection

Object detection – Datasets and challenges

PASCAL Visual Object Classification (VOC):

• Since 2005

• ∼10,000 images, 20 categories

• Evaluation: mAP with IoU > .5

ILSVRC Detection

• Since 2013

• ∼500,000 images, 200 categories

• Evaluation: mAP with IoU > .5

Microsoft Common Objects in COntext (COCO)

• Since 2015

• ∼200,000 images, 80 object categories

• Evaluation: mAP averaged over IoU > .50 : .05 : .95

PASCAL VOC’2010
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(Multi-)Object detection

Basic region proposals

• Pre-select image regions that are likely to contain objects,

• Use a class agnostic object detector for this task,

• Pick a fast one, not necessarily based on machine learning,

• Prefer having too many regions (FPs) rather than missing some (FNs).
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(Multi-)Object detection

Region proposals – Selective Search (Uijlings et al., 2013)

• Over-segmentation: decompose the image into small coherent regions,

ex: based on colors (RGB, HSV, YCbCr, . . . ), textures, super-pixels.

• Bottom-up segmentation: merge similar regions at multiple scales.

• Rescale/warp and provide all such regions as inputs of a classifier.
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(Multi-)Object detection

R-CNN (Girschick et al, 2014)

• Use Selective Search to extract 2,000 regions and warp them,

• Use AlexNet or VGG-16 for feature extraction,

• Replace the last FC layers (classifier) by one binary SVM per class, why?

• ILSVRC classification has 1000 classes, but detection challenges have

less: 20 for PASCAL VOC, 200 for ILSVRC LOC, 80 for MS COCO.

• Classification challenges do not have a class ’background’ (no relevant

objects) since all images contain an object, but sub-regions don’t.
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(Multi-)Object detection

R-CNN – Training

• Extract subregions for all training images and warp them,

• Run the CNN and save their features (tensors).

• Next, train one binary SVM per class to classify each feature tensor,

• Consider a region as positive if it overlaps the desired true bounding box

with an IoU greater than .5, as background otherwise.
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(Multi-)Object detection
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(Multi-)Object detection

R-CNN – Training

As for Overfeat, learn also a regressor for refining the bounding box

to make up for slightly wrong proposals.
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(Multi-)Object detection

R-CNN – Global architecture
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(Multi-)Object detection

R-CNN – Non-Maximum Suppression (NMS)

• Score thresholding: keep only bounding boxes with large confidence.

• (Greedy) Non-maximum suppression:

1 Select the best scoring window,

2 Remove windows too close to the selected one,

3 Select the next best scoring window among remaining ones,

4 Repeat to Step 2 until no more windows are removed.

• Many variants exist.
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(Multi-)Object detection

R-CNN – Results and issues

• Slow at test-time: need to run the CNN for each proposed region,

• CNN features may not be adapted in response to SVMs and regressors,

• Complex multistage training pipeline: SVM, bounding box regressor. . .

• Require a large disk storage at training (need to save feature tensors).
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(Multi-)Object detection

Fast R-CNN (Girshick, 2015)
In R-CNN, the same features are computed multiple times.

(since convolutions are translation invariant)

Region of Interest (RoI) pooling layer:
• Project each proposed region into the feature map,

• Divide each region into h× w grid (cells depend on region size),

• Perform max-pooling in each block to get a fixed size h× w feature.

CNN needs to be run only once instead of 2, 000 times!
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(Multi-)Object detection

Fast R-CNN (Girshick, 2015)

End-to-end training:
• Plug FC layers after the RoI pooling layer and fine tune,

• Incorporate both: classifier and bounding box regressor:

• softmax: K Classes + ’background’ class,
• bbox regression: K × 4 (class specific).
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(Multi-)Object detection

Fast R-CNN (Girshick, 2015)

Multitask loss: cross-entropy + bbox refinement

E = −pd log p̂d︸ ︷︷ ︸
cross-entropy

+λ1d6=0

[
|x− x̂d|+ |y − ŷd|+ |w − ŵd|+ |h− ĥd|

]
︸ ︷︷ ︸

`1 loss

• d: desired class label (background = 0),
• pd / p̂d: one-hot codes and predicted probabilities for class d,
• x, y, w, h: desired bounding box,
• x̂d, ŷd, ŵd, ĥd: predicted bounding box for class d,
• λ > 0: hyperparameter balancing the two task losses.
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Smooth `1: more robust than `22 (SSD) easier to optimize than `1.
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(Multi-)Object detection

Fast R-CNN – Results

R-CNN Fast R-CNN

mAP 66.0 66.9 better ,
Training time 84 hours 9.5 hours faster ,
Test time per image 47 sec 0.32 sec a lot faster ,
+ Selective search 50 sec 2 sec bottleneck /

(On PASCAL VOC 2007 and using VGG-16)

• Training is 8× faster,

• Testing is 146× faster but this does not include Selective Search,

• Only 25× faster when including Selective Search.

Can we make the CNN do region proposals too?
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(Multi-)Object detection

Faster R-CNN (Ren et al., 2015)

• Insert a Region Proposal Network (RPN) after the last convolutional layer,

• RPN is small and trained to produce region proposals directly,

• Next, use RoI pooling, classifier and bbox regressor (just like Fast R-CNN).
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(Multi-)Object detection

Faster R-CNN – RPN

• Slide a window on the feature map:

{
• classify into object/background,

• regress bbox locations.

• Position of the sliding window = rough localization,
• Box regression = refined localization.

• Use a predefined set of nine sliding windows called anchor boxes,
• Regression gives offsets from anchor boxes to proposed RoI,
• Classification gives the probability that each proposed RoI shows an object.
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(Multi-)Object detection

Faster R-CNN – Training & Results

Train everything together with four loss:

• RPN classification (keep anchor or not),

• RPN regression (anchor → proposed RoI),

• Fast R-CNN classification (over classes),

• Fast R-CNN regression (RoI → bounding box).

Results

R-CNN Fast R-CNN Faster R-CNN

mAP 66.0 66.9 66.9

Test time per image 50 sec 2 sec 0.2 sec

with Selective search

(On PASCAL VOC 2007 and using VGG-16)
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(Multi-)Object detection

YOLO: You Only Look Once (Redmon et al., 2016)

• Proposal-free object detection pipeline,

• Learn directly a CNN predicting the bounding boxes:

448× 448 Image → Bounding box coordinates and class probabilities,

• As the number of objects is unknown, decompose the image on a 7× 7

grid, and predict 2 bboxes per cell (up to 98 bounding boxes),

• Perform non-max suppression.

Use features from the entire image

to predict simultaneously each bounding box.
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(Multi-)Object detection

YOLO: You Only Look Once (Redmon et al., 2016)

• Learn 2 bboxes per cell of a 7× 7 grid:

If the center of an object falls into a

grid cell, that cell is responsible for

detecting that object.

• Each cell contains:

• Class probabilities

pk st pk = Pr(Classk|Object)

• Two bounding boxes with confidences:

2× (x, y, w, h, c) where c = Pr(Object)× IoU

(up to two objects can have their center in the same cell)

• At test time, individual box confidence prediction

pkc = Pr(Classk|Object)× Pr(Object)× IoU = Pr(Object & Classk)× IoU
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(Multi-)Object detection

YOLO: You Only Look Once (Redmon et al., 2016)
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(Multi-)Object detection

YOLO: You Only Look Once (Redmon et al., 2016)

• Modified GoogLeNet,

• 24 Convolutional layers,

• 2 Fully connected layers.
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(Multi-)Object detection

YOLO – Loss



dummy

7× 7× 2

(x, y, w, h, c)

dummy

E(W ) = λcoord

7×7∑
i=1

2∑
j=1

1obj
ij

[
(xi − x̂ij)2 + (yi − ŷij)2

]
+ λcoord

7×7∑
i=1

2∑
j=1

1obj
ij

[
(
√
wi −

√
ŵij)

2 + (
√
hi −

√
ĥij)

2

]

+

λnoobj

7×7∑
i=1

2∑
j=1

1obj
ij (ci − ĉij)

2 + λnoobj(1− 1obj
ij )ĉ

2
ij

+

λnoobj

7×7∑
i=1

1obj
i

20∑
k=1

(pik − p̂ik)2
}

7× 7× 20

p̂

• 1obj
ij encodes if there is a j-th object in cell i,

• 1obj
i encodes if there is at least one object in cell i,

• λcoord, λnoobj controls the balance of the different terms.

Note: This is a reinterpretation of the loss written in the original paper.
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(Multi-)Object detection

YOLO – Results

• Slightly worse than Fast R-CNN on specific challenges,

• Better at generalizing on unseen datasets.

• Real-time: about 45 frames per second (Faster R-CNN is about 7fps),

• Demo: http://pjreddie.com/yolo/

40
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(Multi-)Object detection

YOLO v2 (Redmon & Farhadi, 2017)

• dimension priors: learn 5 anchors with k-means, instead of hand-picked ones,

• location prediction: parameterize the bbox s.t. its center is always in its cell,

• passthrough: add a shortcut connection (similar to SSD, ResNet, DenseNet),

• multi-scale: change input size during training (since fully convolutional).
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(Multi-)Object detection

YOLO v2 – Comparisons
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(Multi-)Object detection

YOLO v2 – Comparisons

CVPR’2017 Best Paper Honorable Mention Award
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Segmentation

Segmentation – Terminology

• Segmentation:

• Partition of an image into several ”coherent” parts/segments,
• Without any attempt at understanding what these parts represent,
• Typically based on color, textures, smoothness of boundaries,
• Also referred to as super-pixel segmentation.
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Segmentation

Segmentation – Terminology

• Semantic segmentation:

• Each segment corresponds to a class label (objects + background),
• Also referred to as scene parsing or scene labeling.

• Instance segmentation:

• Find object boundaries between objects, including delineations

between instances of the same object.

• Semantic instance segmentation: find object boundaries + labels.
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Semantic segmentation

Semantic segmentation – Sliding window

(Farabet et al., 2013, Pinheiro and Collobert, 2014)

• Slide a window and predict the object class for each of them,

• Affect the class to the corresponding central pixel.
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Semantic segmentation

Semantic segmentation – Fully convolutional

• Design a network as a bunch of convolutional layers,

• Make predictions for all pixels all at once.
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Semantic segmentation

Semantic segmentation – Fully convolutional

• Design a network as a bunch of convolutional layers,

• Perform downsampling and upsampling inside the network.
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Semantic segmentation

Semantic segmentation – Unpooling
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Semantic segmentation

Semantic segmentation – Transposed convolution
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Semantic segmentation

Semantic segmentation – Transposed convolution

Also known as: deconvolutions (bad name) or fractionally strided convolutions.
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Semantic segmentation

Semantic segmentation – Overview

(Long et al., 2015 & Noh et al, 2015)

• Design a network as a bunch of convolutional layers,

• Perform downsampling and upsampling inside the network.

Problem: the two cows are merged together.

How to find boundaries between objects?
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Semantic instance segmentation

Instance segmentation – Mask R-CNN (He et al., 2017)

• Perform instance segmentation and object detection jointly,

• Add a parallel branch to Faster R-CNN in order to predict an object mask,

• For each RoI, use one binary mask per class defined on a 14× 14 grid,

• Each cell indicates if it is covered by the object of the given class,

• Learn the three tasks jointly: classification, bbox and mask prediction,

• At test time, combine results obtained at different scales.
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Instance segmentation

Instance segmentation – Mask R-CNN – Results

Provides really good results at about 5fps.
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Image captioning

Image captioning

Goal: Generate fitting natural-language captions only based on the pixels.

How: Combine a vision deep CNN and a language-generating RNN.

What are Recurrent Neural Networks (RNNs)?

(Source: Lucas Masuch & Caner Hazırbaş)
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Image captioning – Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs)

• Recurrent Neural Networks (RNNs) are Artificial Neural Networks that can

deal with sequences of variable size.

• RNNs have a feedback loop where the net’s output is fed back into the

net along with the next input.

• RNNs receive an input and produce an output. Unlike other nets, the

inputs and outputs can come in a sequence.

• Variant of RNN is Long Short Term Memory (LSTM).

State-of-the-art results in time series prediction: speech recognition, stock

market prediction, language translation, language generation and other

sequence learning problems. Everything that can be processed sequentially.

(Source: Caner Hazırbaş)
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Image captioning – Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs)

Examples:

• one-to-one: image classification (traditional),

• one-to-many: image captioning,

• many-to-one: video classification,

• many-to-many: text translation, frame-by-frame classif.

(Source: Lucas Masuch) 57



Image captioning – Recurrent Neural Networks (RNNs)

Language generating RNNs – Training

How to learn ’The cat is in the kitchen drinking milk.’?

• Word: a 1-of-K code (large dictionary of K words),
• Learn: P(next word | current word & past),
• Represent the past as a feature vector.

• Learn also how to represent the current sentence,
• Repeat for the next word,

and the previous words.

58



Image captioning – Recurrent Neural Networks (RNNs)

Language generating RNNs – Training

How to learn ’The cat is in the kitchen drinking milk.’?

• Word: a 1-of-K code (large dictionary of K words),
• Learn: P(next word | current word & past),
• Represent the past as a feature vector.

• Learn also how to represent the current sentence,

• Repeat for the next word,

and the previous words.

58



Image captioning – Recurrent Neural Networks (RNNs)

Language generating RNNs – Training

How to learn ’The cat is in the kitchen drinking milk.’?

• Word: a 1-of-K code (large dictionary of K words),
• Learn: P(next word | current word & past),
• Represent the past as a feature vector.

• Learn also how to represent the current sentence,
• Repeat for the next word,

and the previous words.

58



Image captioning – Recurrent Neural Networks (RNNs)

Language generating RNNs – Training

How to learn ’The cat is in the kitchen drinking milk.’?

• Word: a 1-of-K code (large dictionary of K words),
• Learn: P(next word | current word & past),
• Represent the past as a feature vector.

• Learn also how to represent the current sentence,
• Repeat for the next word, and the previous words.

58



Image captioning – Recurrent Neural Networks (RNNs)

Language generating RNNs – Training

• Add two words: START and STOP to delimitate the sentence,
• Learn everything end-to-end on a large corpus of sentences,
• Minimize the sum of the cross-entropy of each word (maximum likelihood),
• Intermediate feature will learn how to memorize the past/context/state.

How should the network architecture and size of intermediate features

evolve with the location in the sequence?
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Image captioning – Recurrent Neural Networks (RNNs)

Language generating RNNs – Training

• Use the same networks and the same feature dimension,
• The past is always embedded in a fix-sized feature,
• Set the first feature as a zero tensor.

• Allows you to learn from arbitrarily long sequences,
• Sharing the architecture ⇒ less parameters ⇒ training requires less data

and the final prediction can be expected to be more accurate.
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Image captioning – Recurrent Neural Networks (RNNs)

Language generating RNNs – Training
Example of training a simple shallow RNN

Unfolded representation of the RNN for a fixed-length sequence.

Folded representation: A RNN is nothing else than an ANN with loops.

ht = g(Whxxt +Whhht−1 + bh)

yt = softmax(Wyhht + by)
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Image captioning – Recurrent Neural Networks (RNNs)

Language generating RNNs – Testing
Example of generating sentences from a simple shallow RNN

• Provide START, get all the probabilities P(next word | current word = START),

• Select one of these words according to their probabilities, let say ’A’,

• Provide ’A’ and the past, and get P(next word | current word = ’A’ & past),

• Repeat while generating the sentence ’A dog plays

with a ball

’

• Stop as soon as you have picked STOP.
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Image captioning – Recurrent Neural Networks (RNNs)

Language generating RNNs – Testing
Example of generating sentences from a simple shallow RNN

• Provide START, get all the probabilities P(next word | current word = START),

• Select one of these words according to their probabilities, let say ’A’,

• Provide ’A’ and the past, and get P(next word | current word = ’A’ & past),

• Repeat while generating the sentence ’A dog plays with a ball’

• Stop as soon as you have picked STOP.
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Image captioning – Recurrent Neural Networks (RNNs)

Language generating RNNs – Other architectures
Example of a bidirectional RNN

Output at time t may not only depend on the previous elements,

but also on future elements.

ht = g(Whxxt +W forward
hh ht−1 +W backward

hh ht+1 + bh)

yt = softmax(Wyhht + by)
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Image captioning – Recurrent Neural Networks (RNNs)

Language generating RNNs – Other architectures
Example of a deep RNN with 3 hidden layers

We now have multiple layers per time step (a feature hierarchy).

Higher learning capacity but requires a lot more training data.
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Image captioning – Recurrent Neural Networks (RNNs)

Language generating RNNs – Learning algorithm

Backpropagation through time (BPTT)

• Similar to standard backprop for training a traditional Neural Network,

• During training, unfold the network to the size of each training sequence,

• Take into account that parameters are shared by all steps in the network.

Forward through the entire sequence to compute the loss,

then backward through entire sequence to compute gradients.
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Image captioning – Recurrent Neural Networks (RNNs)

Language generating RNNs – Limitations

• Vanilla RNNs have difficulties learning long-term dependencies,

’I grew up in France... I speak fluent ???’

→ We need the context of France from further back.

• One reason is again the vanishing/exploding gradient problems,

• Certain types of RNNs are specifically designed to get around them.

→ Long-Short-Term Memory (LSTM)
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Image captioning – Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)
(Hochreiter & Schmidhuber, 1997)

• The LSTM units give the network memory cells with read, write and reset

operations. During training, the network can learn when it should

remember data and when it should throw it away.

• Well-suited to learn from experience to classify, process and predict time

series when there are very long time lags of unknown size between

important events.
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Image captioning – Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)

= sigm(Wfxxt +Wfhht−1 + bf ) dummy

ht = g(Wcxxt +Wchht−1 + bc) ← memory

yt = softmax(Wyhht + by) ← used as feature for prediction

There are many variants,

but this is the general idea.
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Image captioning – Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)

= sigm(Wfxxt +Wfhht−1 + bf ) dummy

gt = g(Wcxxt +Wchht−1 + bc) ← input modulation gate

ct = gt ← place memory in a cell unit c

ht = ct

yt = softmax(Wyhht + by) ← but use ht to make prediction

There are many variants,

but this is the general idea.
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Image captioning – Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)

= sigm(Wfxxt +Wfhht−1 + bf ) dummy

gt = g(Wcxxt +Wchht−1 + bc) ← input modulation gate

ct = ct−1 + gt ← the cell keeps track of long term

ht = ct

yt = softmax(Wyhht + by)

There are many variants,

but this is the general idea.
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Image captioning – Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)

ft = sigm(Wfxxt +Wfhht−1 + bf ) ← forget gate

gt = g(Wcxxt +Wchht−1 + bc) ← input modulation gate

ct = ft ⊗ ct−1 + gt ← but can forget some of its memories

ht = ct (⊗ = element wise product)

yt = softmax(Wyhht + by)

There are many variants,

but this is the general idea.
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Image captioning – Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)

it = sigm(Wixxt +Wihht−1 + bi) ← input gate

ft = sigm(Wfxxt +Wfhht−1 + bf ) ← forget gate

gt = g(Wcxxt +Wchht−1 + bc) ← input modulation gate

ct = ft ⊗ ct−1 + it ⊗ gt ← and ignore some of the update

ht = ct

yt = softmax(Wyhht + by)

There are many variants,

but this is the general idea.
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Image captioning – Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)

ot = sigm(Woxxt +Wohht−1 + bo) ← output gate

it = sigm(Wixxt +Wihht−1 + bi) ← input gate

ft = sigm(Wfxxt +Wfhht−1 + bf ) ← forget gate

gt = g(Wcxxt +Wchht−1 + bc) ← input modulation gate

ct = ft ⊗ ct−1 + it ⊗ gt

ht = ot ⊗ ct ← weight memory for generating feature

yt = softmax(Wyhht + by)

There are many variants,

but this is the general idea.
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Long Short-Term Memory RNN (LSTM)

ot = sigm(Woxxt +Wohht−1 + bo) ← output gate

it = sigm(Wixxt +Wihht−1 + bi) ← input gate

ft = sigm(Wfxxt +Wfhht−1 + bf ) ← forget gate

gt = g(Wcxxt +Wchht−1 + bc) ← input modulation gate

ct = ft ⊗ ct−1 + it ⊗ gt

ht = ot ⊗ ct ← weight memory for generating feature

yt = softmax(Wyhht + by)

There are many variants,

but this is the general idea.
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Image captioning – Recurrent Neural Networks (RNNs)

LSTM – Example of generated text

Multi-layer LSTM trained on character sequences from texts by W. Shakespeare.

Further reading: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Image captioning – Combining CNN and RNN

Image Captioning – Combining CNN and RNN
DeepImageSent (Karpathy et al., CVPR 2015)

• Plug a standard CNN (its last feature layer) to a vanilla RNN,

• The CNN features are embedded to serve as initial memory state at t = 1,

• Perform end-to-end learning on a large corpus of captioned images,

• Words and images are automatically embedded in a common feature space.
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Image captioning – Combining CNN and RNN

Image Captioning – Combining CNN and RNN
Show and Tell (Vinyals et al., CVPR 2015)

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

• Similar to DeepImageSent, but use LSTM instead of a vanilla RNN,

• Learn to embed words to the feature space of the CNN (role of We),

• The CNN features are used as input at t = −1.
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Image captioning – Combining CNN and RNN

Image Captioning – Combining CNN and RNN
Successful results

72



Image captioning – Combining CNN and RNN

Image Captioning – Combining CNN and RNN
Failure results
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Image captioning – Combining CNN and RNN

Image Captioning – Combining CNN and RNN
Show, Attend and Tell (Xu et al., 2015)

Force the RNN to focus its attention at a different spatial location when

generating each word.
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Image captioning – Combining CNN and RNN

Image Captioning – Combining CNN and RNN
Show, Attend and Tell (Xu et al., 2015)
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Image Captioning – Combining CNN and RNN
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Image captioning – Combining CNN and RNN

Image Captioning – Combining CNN and RNN
Show, Attend and Tell (Xu et al., 2015)
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Visual Question Answering

Visual Question Answering: RNNs with Attention
(Zhu et al, 2016)
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Visual Question Answering

Visual Question Answering: RNNs with Attention
(Zhu et al, 2016)
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Questions?

Next class: Generation, super-resolution and style transfer
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