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Detection, Segmentation, Captioning

Recap of CNNs for classification
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CNNs are ANNs using convolutions instead of full matrix-vector products,

® Use pooling layers between layers to increase their effective receptive fields,

Successively reduce spatial dimensions until the tensor is (almost) flat,

A classifier (generally 3 layers ANNs) is finally plugged after this,

® Various architectures: Inception module, ResNet, DenseNet, . ..



Detection, Segmentation, Captioning

Principle tasks

Classification Instance
+ Localization

Classification Object Detection

Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK

AN J
~

Single object Multiple objects

Image captioning: ’Animals posing for picture.’



Detection, Segmentation, Captioning

Influence of Deep Learning
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Multi-object detection challenge
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Classification + localization

Classification + localization

Classification
+ Localization

Classification

Localization: find the bounding box (bbox) around the (single) object.

Regression problem: predict 4 values encoding the bbox size and location,
usually: left (z), top (y), width (w), height (k).



Classification + localization

Classification + localization: ImageNet

® 1,000 classes (same as classification),

® Each image has one bounding box, =

® About 800 images per class, :

® Algorithm produces 5 classes,

® Evaluation metric: at least one correct
class prediction and one bbox with at

maying van

least .5 Intersection-over-Union (loU).



Classification + localization

Intersection-over-Union (loU)

_ |ANB|
IoUA,B)=———
|AUBJ
Area of Overlap
loU =
Area of Union
| _Predicted bounding box
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Classification + localization

Naive approach

Choose a classifier (AlexNet, VGG, GooglLeNet, ...),

Extract all possible bounding boxes,

Rescale their contents to the size of the network image input,

® (lassify each of them,

Select the one with the maximum confidence level.

Probably works great, but impractical. It would be too slow:
— Need to test many positions and scales,
and use a computationally demanding classifier (CNN).



Classification + localization

Localization as regression

® (Classification ® | ocalization
® |nput: image ® |nput: image
® Qutput: class labels ® Qutput: bounding box (z,y,w,h)
® | oss: cross-entropy ® Loss: MSE / £3 error
Input: image

Neural Net Output:

D Box coordinates
(4 numbers) \
Loss:
Correct output: L2 distance
box coordinates —

(4 numbers)

® Classification+Localization: do both



Classification + localization

Simple recipe for Classification 4+ Localization

Convolution

and Pooling Fully-connected

layers

D @—D H - —> Softmax loss

& Final conv
Class scores
Image feature map

® Step 1: Train/download a classification model (AlexNet, ResNet, ...),
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Classification + localization

Simple recipe for Classification 4+ Localization

Convolution
and Pooling

Image

Final conv
feature map

Step 4: At test time, use both heads.

Fully-connected layers

||

Class scores

“Classification head”

Fully-connected layers

“Regression head”

i

Box coordinates

Step 1: Train/download a classification model (AlexNet, ResNet, ...),
Step 2: Attach a new fully connected regression head,

Step 3: Train the regression head only with SGD and £3 loss,
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Classification + localization

® (Classification head:

1-of-K code with confidence levels (0, 1)

® Regression head:

® (Class agnostic:

4 numbers (one bounding box)

® (Class specific:

K x 4 (one box per class)

Being agnostic doesn’t work as well:
the strategy to find the bounding-box must depend on the class.

11



Classification + localization

Overfeat (Sermanet et al., 2013)

4096 4096 Class scores:

1000
FC FC
Convolution —_ —_ Softmax
+ pooling loss
FC d u
Fc i
Feature map: FC FC }
Image: 1024 x5x5 b e Euclidean
3 x221x221 U loss
- Boxes:
1024
L 1000 x 4
Tweak only the weights of the bbox branch:
A N2 ~ N2 . \2 P
E(Whpex) = Z (x —2a)° + (Y — Fa)° + (w — Wa)” + (h — ha)

(z,d,z,y,w,h)eT
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Classification + localization

Overfeat (Sermanet et al., 2013)

4096 4096 Class scores:

1000
FC FC
Convolution —_ —_ Softmax
+ pooling loss
FCc U U
Fc i
Feature map: FC FC }
Image: 1024 x5x 5 —> e Euclidean
3x221x221 U loss
- Boxes:
1024
08 1000 x 4

The softmax layer provides the confidence level of each bounding box.

Training: augment the data by random shifts and multi-scales, but keep only
the ones with 50% overlap with the desired bounding-box.

Testing: use multi-scale sliding windows and a greedy merge strategy.
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Classification + localization

Overfeat — Sliding windows
How to get classification results for all sliding windows
without running the classifier multiple times?
1. Convert FC layers to 1 x 1 convolutions and fine tune

Class scores:

4096 x 1 x 1 Rl 1000 x 1 x 1
Convolution f ) — | ) —b |
+ pooling 1x 1 conv 1x 1 conv

5x5

conv

)\ s
xonv

Feature map: 1x 1 conv 1x1 conv
Image: 1024 x5x5 ( ) — | ) — | ]
3x221x221 4096 x 1x 1 1024x1x1  Box coordinates:

(4x1000)x 1x1
The size of the sliding window will be the network input size.

This is called a Fully Convolutional Network (FCN).

14



Classification + localization

Overfeat — Sliding windows

2. Apply the network on the larger image

Training time: Small image, 1
x 1 classifier output

= ] = 8w
i |
5x5
10x10
5x5 2x2 5x5 1x1 1x1
Convolution pooling conv conv ~  conv

14x14

Test time: Larger image, 2 x 2

= moeom oo
classifier output, only extra t : 22 22 22
compute at yellow regions H ox6
5x5 12x12 2x2 5x5 1x1 1x1
16x16  convolution pooling conv conv ~  conv

As all layers are convolutions and pooling, the network parameters do not
depend anymore on the input image size. If a larger image is given, multiple
localized answers will be produced with a smaller computational overhead
(the stride at which the window slides depends on the pooling layers).
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Classification + localization

Overfeat — Greedy merge strategy

@ Use the network to extract a set of candidate bounding boxes for each
scale and sliding window,

16



Classification + localization

Overfeat — Greedy merge strategy

@ Use the network to extract a set of candidate bounding boxes for each
scale and sliding window,
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Classification + localization

Overfeat — Greedy merge strategy

@ Use the network to extract a set of candidate bounding boxes for each
scale and sliding window,
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Classification + localization

Overfeat — Greedy merge strategy

P

AF
P | R

@ Use the network to extract a set of candidate bounding boxes for each
scale and sliding window,

16



Classification + localization

Overfeat — Greedy merge strategy

@ Use the network to extract a set of candidate bounding boxes for each
scale and sliding window,
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Classification + localization

Overfeat — Greedy merge strategy

Measure of distance

@ Use the network to extract a set of candidate bounding boxes for each
scale and sliding window,

® Look for the two closest bounding boxes: distances to their intersection.
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Classification + localization

Overfeat — Greedy merge strategy

Measure of distance Strategy for merging

@ Use the network to extract a set of candidate bounding boxes for each
scale and sliding window,

® Look for the two closest bounding boxes: distances to their intersection.
©® Merge them by averaging their coordinates and scores,

@ Update the set of candidates by replacing them by their merged version,

16



Classification + localization

Overfeat — Greedy merge strategy

@ Use the network to extract a set of candidate bounding boxes for each
scale and sliding window,

® Look for the two closest bounding boxes: distances to their intersection.
©® Merge them by averaging their coordinates and scores,

@ Update the set of candidates by replacing them by their merged version,
® Go back to Step @ until one bounding box remains.
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Classification + localization

Overfeat — Greedy merge strategy

@ Use the network to extract a set of candidate bounding boxes for each
scale and sliding window,

® Look for the two closest bounding boxes: distances to their intersection.
©® Merge them by averaging their coordinates and scores,
@ Update the set of candidates by replacing them by their merged version,

® Go back to Step @ until one bounding box remains.

— Winner ILSVRC LOC 2013!
16



Classification + localization

Classification 4+ localization — ImageNet results

Localization Error (Top 5) AlexNet: Localization method not published

Overfeat: Multiscale convolutional regression
with box merging

VGG: Same as Overfeat, but fewer scales
and locations; simpler method, gains all due
to deeper features

AlexNet Overfeat VGG (2014) ResNet ) L
(2012) (2013) (2015) ResNet: Different localization method (RPN)

and much deeper features

Most recent techniques use a classifier in predefined windows.
These techniques aim directly at solving
the multi-object detection task.
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(Multi-)Object detection




(Multi-)Object detection

Object detection

® Goal: detect and localize all objects of the scene,
® Problem: need to test many positions and scales,

® Solution: only look at a tiny subset of possible positions.

18



(Multi-)Object detection

Object detection — Datasets and challenges

PASCAL Visual Object Classification (VOC):
® Since 2005
® ~10,000 images, 20 categories
® Evaluation: mAP with loU > .5

ILSVRC Detection
® Since 2013
® ~500,000 images, 200 categories
® Evaluation: mAP with loU > .5

Microsoft Common Objects in COntext (COCO)
® Since 2015

® ~200,000 images, 80 object categories PASCAL VOC'2010
® Evaluation: mAP averaged over loU > .50 : .05 : .95

19



(Multi-)Object detection

Basic region proposals

® Pre-select image regions that are likely to contain objects,

® Use a class agnostic object detector for this task,

® Pick a fast one, not necessarily based on machine learning,

® Prefer having too many regions (FPs) rather than missing some (FNs).

20



(Multi-)Object detection

Region proposals — Selective Search (Uijlings et al., 2013)

® Over-segmentation: decompose the image into small coherent regions,
ex: based on colors (RGB, HSV, YCbCr, ...), textures, super-pixels.

® Bottom-up segmentation: merge similar regions at multiple scales.

Convert
regions
to boxes

® Rescale/warp and provide all such regions as inputs of a classifier.

21



(Multi-)Object detection

R-CNN (Girschick et al, 2014)

;
/ H
> i=>|person? yes.
_______________ CNNiNg :
tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

® Use Selective Search to extract 2,000 regions and warp them,
® Use AlexNet or VGG-16 for feature extraction,
® Replace the last FC layers (classifier) by one binary SVM per class, why?

® |LSVRC classification has 1000 classes, but detection challenges have
less: 20 for PASCAL VOC, 200 for ILSVRC LOC, 80 for MS COCO.

® Classification challenges do not have a class 'background’ (no relevant
objects) since all images contain an object, but sub-regions don't.

22



(Multi-)Object detection

R-CNN - Training

® Extract subregions for all training images and warp them,

® Run the CNN and save their features (tensors).

Training image regions

Cached region features

Positive samples for cat SVM Negative samples for cat SVM

® Next, train one binary SVM per class to classify each feature tensor,

® Consider a region as positive if it overlaps the desired true bounding box
with an loU greater than .5, as background otherwise.

23



(Multi-)Object detection

R-CNN - Training

® Extract subregions for all training images and warp them,

® Run the CNN and save their features (tensors).

[ "
- ‘v -
Training image regions .
Cached region features H
NI
Negative samples for dog SVM Positive samples for dog SVM

® Next, train one binary SVM per class to classify each feature tensor,

® Consider a region as positive if it overlaps the desired true bounding box
with an loU greater than .5, as background otherwise.
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(Multi-)Object detection

R-CNN - Training

As for Overfeat, learn also a regressor for refining the bounding box
to make up for slightly wrong proposals.

Training image regions

Cached region features

Regression targets 0,0,0,0) (.25,0,0,0) (0,0,-0.125, 0)
(dx, dy, dw, dh) Proposal is good Proposal too Proposal too
Normalized coordinates far to left wide

24



(Multi-)Object detection

R-CNN - Global architecture

Linear Regression for bounding box offsets

Bboxreg || svMs | Classify regions with
Bboxreg || SVMs SVMs

®
Forward each
ConvN )
ConvN et region through
et ConvNet
ConvN
i Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

25



(Multi-)Object detection

R-CNN - Non-Maximum Suppression (NMS)

We expect: We get:

® Score thresholding: keep only bounding boxes with large confidence.

® (Greedy) Non-maximum suppression:
@ Select the best scoring window,
® Remove windows too close to the selected one,
© Select the next best scoring window among remaining ones,
@ Repeat to Step @ until no more windows are removed.

® Many variants exist.
26



(Multi-)Object detection

R-CNN - Results and issues

80 . VOC 2007

[ VOC 2010

Mean Average Precision (mAP)

DPM (2011)  Regionlets R-CNN R-CNN + R-CNN
(2013) (2014, bbox reg (VGG-16)
AlexNet) (AlexNet)

Slow at test-time: need to run the CNN for each proposed region,

CNN features may not be adapted in response to SVMs and regressors,
® Complex multistage training pipeline: SVM, bounding box regressor. ..

® Require a large disk storage at training (need to save feature tensors).
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(Multi-)Object detection

Fast R-CNN (Girshick, 2015)

In R-CNN, the same features are computed multiple times.
(since convolutions are translation invariant)

Project region proposal
onto conv feature map

Convolution

Fully-connected
and Pooling

layers
Hi-res input image: Hi-res conv features: Problem: Fully-connected
3x 890 X 690 CxHxW layers expect low-res conv
with region with region proposal features: Cxhxw

proposal
Region of Interest (Rol) pooling layer:
® Project each proposed region into the feature map,
® Divide each region into h X w grid (cells depend on region size),

® Perform max-pooling in each block to get a fixed size h X w feature.

CNN needs to be run only once instead of 2,000 times!
28



(Multi-)Object detection

Fast R-CNN (Girshick, 2015)

In R-CNN, the same features are computed multiple times.
(since convolutions are translation invariant)

Divide projected

Convolution
e : Fully-connected
and Pooling region into h x w grid R
Hi-res input image: Hi-res conv features: Problem: Fully-connected
3x 890 X 690 CxHxW layers expect low-res conv
with region with region proposal features: Cxhxw

proposal
Region of Interest (Rol) pooling layer:
® Project each proposed region into the feature map,
® Divide each region into h X w grid (cells depend on region size),

® Perform max-pooling in each block to get a fixed size h X w feature.

CNN needs to be run only once instead of 2,000 times!
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(Multi-)Object detection

Fast R-CNN (Girshick, 2015)

In R-CNN, the same features are computed multiple times.
(since convolutions are translation invariant)

Max-pool within

i each grid cell
Convolution an Fully-connected
and Pooling layers
Hi-res input image: Hi-res conv features: Rol conv features:  Fully-connected layers expect
3x 890 X 690 CxHxW Cxhxw low-res conv features:
with region with region proposal for region proposal Cxhxw

proposal
Region of Interest (Rol) pooling layer:
® Project each proposed region into the feature map,

® Divide each region into h X w grid (cells depend on region size),

® Perform max-pooling in each block to get a fixed size h X w feature.

CNN needs to be run only once instead of 2,000 times!
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(Multi-)Object detection

Fast R-CNN (Girshick, 2015)

Outputs: beX
softmax regressor

Rol FC FC
pooling
layer FCs
Rol feature
feature map vector For each Rol

End-to-end training:
® Plug FC layers after the Rol pooling layer and fine tune,
® |ncorporate both: classifier and bounding box regressor:

® softmax: K Classes + 'background’ class,
® bbox regression: K x 4 (class specific).

29



(Multi-)Object detection

Fast R-CNN (Girshick, 2015)

Multitask loss: cross-entropy + bbox refinement

E = —pglogpa +A1axo [|J‘ — Zq| + |y — Ga| + |w — wa| + | — fld|]
—_————

cross-entropy

£; loss
° d desired class label (background = 0),
® py / Pa: one-hot codes and predicted probabilities for class d,
® x,y,w,h: desired bounding box,
® 2, Ud, Wd, fzd: predicted bounding box for class d,
°A>0: hyperparameter balancing the two task losses.
. 4 . 4 Smooth £,
3 3 w3

-4 2 0 2 4 -4 2 0 2 4

-4 2 0 2 4
z z

Smooth ¢1: more robust than E% (SSD) easier to optimize than /5.
30



(Multi-)Object detection

Fast R-CNN — Results

R-CNN  Fast R-CNN

mAP 66.0 66.9 better ®
Training time 84 hours 9.5 hours faster ©
Test time per image 47 sec 0.32 sec a lot faster ©
+ Selective search 50 sec 2 sec bottleneck ®

(On PASCAL VOC 2007 and using VGG-16)

® Training is 8x faster,

® Testing is 146 x faster but this does not include Selective Search,

® Only 25x faster when including Selective Search.

Can we make the CNN do region proposals too?

31



(Multi-)Object detection

Region Proposal
Network

Region

(Ren et al., 2015)

proposals

CNN

® Insert a Region Proposal Network (RPN) after the last convolutional layer,
® RPN is small and trained to produce region proposals directly,
® Next, use Rol pooling, classifier and bbox regressor (just like Fast R-CNN).

— -

feature map

share features

24

—ﬁ—

_ Fast R-CNN

y 4

CNN

” 43

=
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(Multi-)Object detection

Faster R-CNN - RPN

) ) ® classify into object/background,
® Slide a window on the feature map:
® regress bbox locations.

® Position of the sliding window = rough localization,
® Box regression = refined localization.

&, classifier

[ 2kscores | [ 4k coordinates | mm  Kanchorboxes

cls layer \ ’ reg layer

' intermediate layer

Rol pooling

proposals I/

Region Proposal Network g

feature maps

L]
|
[~ ]
=

comvimers / sliding window.
A i’ conv feature map

® Use a predefined set of nine sliding windows called anchor boxes,
® Regression gives offsets from anchor boxes to proposed Rol,

® (lassification gives the probability that each proposed Rol shows an object.
33



(Multi-)Object detection

Train everything together with four loss:

RPN classification (keep anchor or not),

RPN regression (anchor — proposed Rol),

Fast R-CNN classification (over classes),

Fast R-CNN regression (Rol — bounding box).

Results
R-CNN  Fast R-CNN  Faster R-CNN
mAP 66.0 66.9 66.9
Test time per image 50 sec 2 sec 0.2 sec

with Selective search

(On PASCAL VOC 2007 and using VGG-16)

34



(Multi-)Object detection

YOLO: You Only Look Once (Redmon et al., 2016)

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Proposal-free object detection pipeline,
® | earn directly a CNN predicting the bounding boxes:

448 x 448 Image — Bounding box coordinates and class probabilities,

As the number of objects is unknown, decompose the imageona 7 x 7
grid, and predict 2 bboxes per cell (up to 98 bounding boxes),

® Perform non-max suppression.

Use features from the entire image
to predict simultaneously each bounding box.
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(Multi-)Object detection

YOLO: You Only Look Once (Redmon et al., 2016)

® |earn 2 bboxes per cell of a 7 x 7 grid:
If the center of an object falls into a
grid cell, that cell is responsible for
detecting that object.

® Each cell contains:

® (Class probabilities

pr st pr = Pr(Class|Object)

® Two bounding boxes with confidences:
2 x (z,y,w,h,c¢) where ¢ = Pr(Object) x loU
(up to two objects can have their center in the same cell)
® At test time, individual box confidence prediction
prc = Pr(Classi|Object) x Pr(Object) x loU = Pr(Object & Classi) x loU

36



(Multi-)Object detection

(Redmon et al., 2016)

Each cell predicts:

- For each bounding box:
4 coordinates (x, y, w, h)
1 confidence value

- Some number of class

probabilities
For Pascal VOC: =
7%
. %0
- 7x7 grid %
- 2bounding boxes / cell Tst-5th 6th - 10th 11th - 30th
- 20classes Box #1 Box #2 Class Probabilities

7Xx7x(2x5+20)=7x7x30tensor = 1470 outputs

37



(Multi-)Object detection

YOLO: You Only Look Once (Redmon et al., 2016)
i ‘ -XUX@ A

Conv.Layer  Convolutional Layers Conn. Layer _Conn. Layer
7x7x6452 Detoction Layer

+ NMS
+ Score threshold
——

® Modified GoogleNet,
® 24 Convolutional layers,

® 2 Fully connected layers.

38



(Multi-)Object detection

YOLO - Loss

TXT 2
E = Acoord ZZ 10bj ' i :i,’f/j)Q + (yl - lgij)ﬂ

=1l g=il

TXT 2
+ )\coord Z Z 1ObJ |: w; — 12)7;]')2 + (\/}71 - H13)2:| TXTxX2

¢=il g=il (I’y7w7h7 C)
TXT 2
+ in’b’ ; — &1)% 4 Anoobj(1 — 1°9)&2,
z] noobj ij )
=il g=il

iy } 7 X7 % 20

+ Z 1ObJ Z Dik — fh:k)Q P

=1 k=1

d 1;’;?j encodes if there is a j-th object in cell %,
® 1% encodes if there is at least one object in cell 7,
® Acoord: Anoobj controls the balance of the different terms.

Note: This is a reinterpretation of the loss written in the original paper.
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(Multi-)Object detection

YOLO - Results

® Slightly worse than Fast R-CNN on specific challenges,
® Better at generalizing on unseen datasets.

Qualitative Results. YOLO running on sample artwork and natural images from the internet. Made one mistake only, find it!

® Real-time: about 45 frames per second (Faster R-CNN is about 7fps),
® Demo: http://pjreddie.com/yolo/

40
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(Multi-)Object detection

YOLO v2 (Redmon & Farhadi, 2017)

® dimension priors: learn 5 anchors with k-means, instead of hand-picked ones,
® |ocation prediction: parameterize the bbox s.t. its center is always in its cell,
® passthrough: add a shortcut connection (similar to SSD, ResNet, DenseNet),

® multi-scale: change input size during training (since fully convolutional).

YOLO YOLOv2
batch norm? v v

hi-res classifier? v
convolutional?
anchor boxes?

new network?
dimension priors?
location prediction?
passthrough?
multi-scale?

hi-res detector?
VOC2007 mAP | 63.4 |65.8 69.5 69.2 69.6 744 754 76.8

SNENENEN
SNENENENEN
NN
SN N N N
SN N NN NENEN

R T T T SR NENEN

3

The path from YOLO to YOLOv2.
4



(Multi-)Object detection

Detection Frameworks Train mAP FPS
Fast R-CNN [5] 2007+2012  70.0 0.5
Faster R-CNN VGG-16[15] 2007+2012  73.2 7
Faster R-CNN ResNet[6] 200742012 764 5

YOLO [14] 200742012 634 45
SSD300 [11] 2007+2012  74.3 46
SSD500 [11] 200742012 76.8 19
YOLOV2 288 x 288 2007+2012  69.0 91
YOLOV2 352 x 352 2007+2012  73.7 81
YOLOv2 416 x 416 2007+2012  76.8 67
YOLOvV2 480 x 480 2007+2012  77.8 59
YOLOV2 544 x 544 200742012 78.6 40

Detection frameworks on PASCAL VOC 2007.
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(Multi-)Object detection

verall mAP

40

35

30
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Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object detectors." arXiv preprint arXiv:1611.10012 (2016).

=
v

10

YOLO v2 — Comparisons

y A,
EQ&‘ Meta Architecture
2 T meo 2o momene. @  Faster RCNN W R-FCN € SsD
<& ————m = === 2 """ e - -
2-"0 e = >
-89 % @ 2
~ (& l7. Faster R-CNN, Inception ResNet,
High Ros, 300 proposals, Stride 8
L ° 7
& ¢
LG
i @
* Feature Extractor
© Inception Resnet V2
) g @ Inception V2
88D, Inception V2, Lo Res o |nCeptiOn V3
'8SD, MobileNet, Lo Res O MoblleNet
@® Resnet 101
® VGG
0 400 600 800
GPU Time

CVPR’2017 Best Paper Honorable Mention Award

1000
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Segmentation




Segmentation — Terminology

Semantic Segmentation Semantic Instance
Segmentation

Input Image Segmentation

® Segmentation:
® Partition of an image into several "coherent” parts/segments,
® Without any attempt at understanding what these parts represent,
® Typically based on color, textures, smoothness of boundaries,

® Also referred to as super-pixel segmentation.
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Segmentation — Terminology

Semantic Segmentation Semantic Instance

Segmentation
Segmentation

Input Image
® Semantic segmentation:

® Each segment corresponds to a class label (objects + background),
® Also referred to as scene parsing or scene labeling.

® |nstance segmentation:

® Find object boundaries between objects, including delineations
between instances of the same object.

® Semantic instance segmentation: find object boundaries + labels.
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Semantic segmentation

Semantic segmentation — Sliding window
(Farabet et al., 2013, Pinheiro and Collobert, 2014)

® Slide a window and predict the object class for each of them,
® Affect the class to the corresponding central pixel.

Classify center
Extractpatch  ive) with CNN

Full image

Cow

Cow

Grass

Problem: Very inefficient! Not
reusing shared features between
overlapping patches

46



Semantic segmentation

Semantic segmentation — Fully convolutional

® Design a network as a bunch of convolutional layers,

® Make predictions for all pixels all at once.

Conv Conv Conv

argmax
—

Input: N ) o
3x I’-)| x W Y Scores: Predictions:
CxHxW HxW
i . Convolutions:
Problem: convolutions at DxHxW

original image resolution will
be very expensive ...

47



Semantic segmentation

Semantic segmentation — Fully convolutional

® Design a network as a bunch of convolutional layers,

® Perform downsampling and upsampling inside the network.

Upsampling:

Downsampling:
277?

Pooling, strided
Copontel Med-res: Med-res:
D, x H/4 x W/4 D, x H/4 x W/4

Low-res:

- D, x H/4 x W/4
Input: High-res: High-res: Predictions:

3xHXW D xH2x W2 D, x H2 x W2 ey

48



Semantic segmentation

Semantic segmentation — Unpooling

Max Pooling

. Max Unpoolin
Remember which element was max! p 9

Use positions from

11216 3 pooling layer olo 2 o
5 5 6 112 0 1 0 0
I . 2| a
1]2]2] 1 7|8 Rest of the network 20O ¢C
7 3|4 8 3 0 0 4
Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4

Corresponding pairs of
downsampling and
upsampling layers
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Semantic segmentation

Semantic segmentation — Transposed convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4

_—

Dot product
between filter
and input

Output: 2 x 2

Filter moves 2 pixels in
the input for every one
pixel in the output

Stride gives ratio between

movement in input and
output

50



Semantic segmentation

Semantic segmentation — Transposed convolution

. . Sum where
Othernames 3 x 3 transpose convolution, stride 2 pad 1 output overlaps
-Deconvolution (bad) /
-Upconvolution
-Fractionally strided
convolution 4
-Backward strided > Filter moves 2 pixels in
convolution Input gives the output for every one
weight for pixel in the input
filter
Stride gives ratio between
movement in output and
input
Input: 2 x 2 Output: 4 x 4

Also known as: deconvolutions (bad name) or fractionally strided convolutions.
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Semantic segmentation

Semantic segmentation — Overview
(Long et al., 2015 & Noh et al, 2015)

® Design a network as a bunch of convolutional layers,

® Perform downsampling and upsampling inside the network.

— Upsampling:
Downsampllng. Unpooling or strided
Pooling, strided transpose convolution

CopOE Med-res: Med-res:
D, x H/4 x W/4 D, x H/4 x W/4

Low-res:
D, x H/4 x W/4
Input: High-res: High-res: tione
Predictions:

3xHxW D, x H/2 x W/2 D, x H/2 x W/2 HxW

Problem: the two cows are merged together.
How to find boundaries between objects?
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Semantic instance segmentation

Instance segmentation — Mask R-CNN (He et al., 2017)

® Perform instance segmentation and object detection jointly,
® Add a parallel branch to Faster R-CNN in order to predict an object mask,
® For each Rol, use one binary mask per class defined on a 14 x 14 grid,

Classification Scores: C
Box coordinates (per class): 4 * C

< = |
i - ' . —_— —_—
CNN

Rol Align Conv Conv

256 x14x 14 256x 14 x 14 Predict a mask for
each of C classes

Cx14x14
® Each cell indicates if it is covered by the object of the given class,
® | earn the three tasks jointly: classification, bbox and mask prediction,
® At test time, combine results obtained at different scales.
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Instance segmentation

Instance segmentation — Mask R-CNN — Results

Provides really good results at about 5fps.
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Image captioning




Image captioning

Image captioning

Vision Language
Deep CNN Generating RNN

A group of people
shopping at an outdoor
market.

There are many
vegetables at the
fruit stand.

Goal: Generate fitting natural-language captions only based on the pixels.
How: Combine a vision deep CNN and a language-generating RNN.

What are Recurrent Neural Networks (RNNs)?
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Image captioning — Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs)

® Recurrent Neural Networks (RNNs) are Artificial Neural Networks that can

deal with sequences of variable size.

® RNNs have a feedback loop where the net's output is fed back into the
net along with the next input.

® RNNs receive an input and produce an output. Unlike other nets, the
inputs and outputs can come in a sequence.

® Variant of RNN is Long Short Term Memory (LSTM).
State-of-the-art results in time series prediction: speech recognition, stock

market prediction, language translation, language generation and other
sequence learning problems. Everything that can be processed sequentially.
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Image captioning — Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs)

one to one one to many many to one many to many many to many
i 0 0 gen
1 [

0 0 000 ooo  Boo
RNNs are general computers which can learn algorithms to map input
sequences to output sequences (flexible-sized vectors). The output
vector's contents are influenced by the entire history of inputs.

® one-to-one: image classification (traditional),
® one-to-many: image captioning,
Examples: ) o
® many-to-one: video classification,
® many-to-many: text translation, frame-by-frame classif.
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Training
How to learn *The cat is in the kitchen drinking milk.’?

® Word: a 1-of-K code (large dictionary of K words),
® |earn: P(next word | current word & past),
® Represent the past as a feature vector.

’kitchen’ Next word

0010000 |~ 1-of-K code

’The cat is in ’

’The cat is in’ *)Q —> D —>

-]
g
E
g
E]
°
g
3
@

Some feature f
extractor
Past DIDIIORROINS.  Gurrent word
s *the’ 1-0f-K code
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Training
How to learn *The cat is in the kitchen drinking milk.’?

® Word: a 1-of-K code (large dictionary of K words),
® |earn: P(next word | current word & past),
® Represent the past as a feature vector.

’kitchen’ Next word

0010000 |~ 1-of-K code

Some feature vector
representing
’The cat is in ’

’The cat is in’ *)Q —> D —>

Some feature
extractor

Some feature vector
representing
. ’The cat is in the ’

DIDIIORROINS.  Gurrent word

the’ 1-of-K code

-]
g
E
g
E]
°
g
3
@

Past
® |earn also how to represent the current sentence,
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Training
How to learn *The cat is in the kitchen drinking milk.’?

® Word: a 1-of-K code (large dictionary of K words),
® |earn: P(next word | current word & past),
® Represent the past as a feature vector.

’kitchen’ ’drinking’ Next word

0010000 0000010 |~ 1-0fK code

Some feature vector Some feature vector
representing f representing
D

’The cat is in ’ ’The cat is in the ’

’Thecat]sm,*)Q*)D*) —_—> D —>

% %
5 5
2 z
£ 3
= =
3 @
g g
g g
A &

Some feature f
extractor
0000100 0010000 |-
P — ., Current word
s ’the’ as ’kitchen’ 1-of-K code

® |earn also how to represent the current sentence,
® Repeat for the next word,
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Training
How to learn *The cat is in the kitchen drinking milk.’?

® Word: a 1-of-K code (large dictionary of K words),
® |earn: P(next word | current word & past),
® Represent the past as a feature vector.

’kitchen’ ’drinking’ Next word

0010000 0000010 |~ 1-0fK code

Some feature vector Some feature vector
representing f representing
D

’The cat is in ’ ’The cat is in the ’

’Thecat]sm,*)Q*)D*) —_—> D —>

% %
5 5
2 z
£ 3
= =
3 @
g g
g g
A &

Some feature f
extractor
0000100 0010000 |-
P — ., Current word
s ’the’ as ’kitchen’ 1-of-K code

® |earn also how to represent the current sentence,
® Repeat for the next word, and the previous words.
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Training

’The’ ’milk’ STOP (End-of-Sentence)
0000100 0100000 | Some feature vector 0000001
representing
’The cat is in the
kitchen drinking ’

] —

! ! }

1000000 0000010 0100000

START (Beginning-of-Sentence)

e E
s 13
i g
g 2
3 A

a2
5
B
£
2
i
7}

’drinking’ ‘milk’

® Add two words: START and STOP to delimitate the sentence,

® |earn everything end-to-end on a large corpus of sentences,

® Minimize the sum of the cross-entropy of each word (maximum likelihood),
® Intermediate feature will learn how to memorize the past/context/state.

How should the network architecture and size of intermediate features
evolve with the location in the sequence?
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Training

® Use the same networks and the same feature dimension,
® The past is always embedded in a fix-sized feature,
® Set the first feature as a zero tensor.

"The’ ‘milk’ STOP (End-of-Sentence)
0000100 0100000 | Some feature vector 0000001
e feature dimens representing
Same feature dimension N
kitchen drinking ’

D/ \D
p o~ = §

1000000 Same networks 0000010 0100000

START (Beginning-of-Sentence)

= =
g 8
g £
15} °
g g
< g
£ £

3
@ A

Some networ;

’drinking’ ‘milk’

® Allows you to learn from arbitrarily long sequences,
® Sharing the architecture = less parameters = training requires less data
and the final prediction can be expected to be more accurate.
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Training
Example of training a simple shallow RNN

*The’ "milk’ STOP (End-of-Sentence)
vvyh T Wyh f Wyn T
Whn Whh Whn Whh
—> | hy | > e —> | hg | —> —> |hy | >
Wia f Wia T Wi T
START (Beginning-of-Sentence) ’drinking’ ‘milk’

hi = g(Whaxe + Whphe—1 + by)
y: = softmax(Wyrh: + by)
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Training
Example of training a simple shallow RNN

*The’ milk’ STOP (End-of-Sentence)

0000100] Y1 [0100000] ys [0000001] o
Wy A Wy Wy A

Whn Whn Wi Whh

—> h, | —> — e e e —> —> hs —> —> hg —>
Wia f Wi T Wi T

1000000] 2y [0000010] a5 [0100000] g

START (Beginning-of-Sentence) ’drinking’ ’milk’

Unfolded representation of the RNN for a fixed-length sequence.

hi = g(Whaxt + Whphe—1 + by)
y: = softmax(Wyrh: + by)
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Training
Example of training a simple shallow RNN

‘milk’

0100000 yt
yh
Whh
th
0000010 |y

*drinking’

Unfolded representation of the RNN for a fixed-length sequence.
Folded representation: A RNN is nothing else than an ANN with loops.

hi = g(Whaxe + Whphe—1 + by)
y: = softmax(Wyrh: + by)
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Training
Example of training a simple shallow RNN

*The’ milk’ STOP (End-of-Sentence)

0000100] Y1 [0100000] ys [0000001] o
Wy A Wy Wy A

Whn Whn Wi Whh

—> h, | —> — e e e —> —> hs —> —> hg —>
Wia f Wi T Wi T

1000000] 2y [0000010] a5 [0100000] g

START (Beginning-of-Sentence) ’drinking’ ’milk’

Unfolded representation of the RNN for a fixed-length sequence.
Folded representation: A RNN is nothing else than an ANN with loops.

hi = g(Whaxe + Whphe—1 + by)
y: = softmax(Wyrh: + by)
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Testing
Example of generating sentences from a simple shallow RNN

?A’? ’The’? Ducks?

003.60.10 | Y1
vvyhﬁ

4’ o

Wh1¢
1000000 | @

START (Beginning-of-Sentence)

® Provide START, get all the probabilities P(next word | current word = START),
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Testing
Example of generating sentences from a simple shallow RNN

?A’? ’The’? Ducks? ’cat’? ’dcg’?

yh
Wh h
—> | h ho
Whr th

10[]00[]0 321 0001000 132
Y

START (Beginning-of-Sentence)

® Provide START, get all the probabilities P(next word | current word = START),
® Select one of these words according to their probabilities, let say *A°,

® Provide ’A’ and the past, and get P(next word | current word = *A’ & past),
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Testing
Example of generating sentences from a simple shallow RNN

’A’? *The’? Ducks? scat’? *dog’? 'plays’? ’eats’?

my1 |05nnaoo|y2 |0900010|y3

1/h

yh
Wh h Wh h
—> hy ho hs
Whr Whr

th

10[]00[]0 321 0001000 132 0[]00100 T3
Y »dog’

START (Beginning-of-Sentence)

® Provide START, get all the probabilities P(next word | current word = START),
® Select one of these words according to their probabilities, let say *A°,

® Provide ’A’ and the past, and get P(next word | current word = *A’ & past),
® Repeat while generating the sentence ’A dog plays 2
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Testing
Example of generating sentences from a simple shallow RNN

’A’? *The’? Ducks? scat’? *dog’? 'plays’? ’eats’?

my1 |05nnaoo|y2 |0900010|y3

1/h

yh
Wh h Wh h
—> hy ho hs
Whr Whr

th

10[]00[]0 321 0001000 132 0[]00100 T3
Y »dog’

START (Beginning-of-Sentence)

® Provide START, get all the probabilities P(next word | current word = START),
® Select one of these words according to their probabilities, let say *A°,

® Provide ’A’ and the past, and get P(next word | current word = *A’ & past),
® Repeat while generating the sentence ’A dog plays with 2
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Testing
Example of generating sentences from a simple shallow RNN

’A’? *The’? Ducks? scat’? *dog’? 'plays’? ’eats’?

my1 |05nnaoo|y2 |0900010|y3

1/h

yh
Wh h Wh h
—> hy ho hs
Whr Whr

th

10[]00[]0 321 0001000 132 0[]00100 T3
Y »dog’

START (Beginning-of-Sentence)

® Provide START, get all the probabilities P(next word | current word = START),
® Select one of these words according to their probabilities, let say *A°,

® Provide ’A’ and the past, and get P(next word | current word = *A’ & past),
® Repeat while generating the sentence ’A dog plays with a 2
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Testing
Example of generating sentences from a simple shallow RNN

’A’? *The’? Ducks? scat’? *dog’? 'plays’? ’eats’?

my1 |05nnaoo|y2 |0900010|y3

1/h

yh
Wh h Wh h
—> hy ho hs
Whr Whr

th

10[]00[]0 321 0001000 132 0[]00100 T3
Y »dog’

START (Beginning-of-Sentence)

® Provide START, get all the probabilities P(next word | current word = START),
® Select one of these words according to their probabilities, let say *A°,

® Provide ’A’ and the past, and get P(next word | current word = *A’ & past),
® Repeat while generating the sentence ’A dog plays with a ball’
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Testing
Example of generating sentences from a simple shallow RNN

’A*? *The’? Ducks? ‘cat’? dog’? >plays’? ’eats’? 'in",’ STOP?
[0036010] Y1 |05nnaoo|y2 [0900010] ys [00000.1.9] Y7

Wyn f Wyn %

yh
Wh h Wh h VVh n
—> | h hy —> | h3 hq
Whr Whr

Wha ¢ Wi ¢
10[]00[]0 921 00010[]0 132 0000100 3 0100000| 7
START (Beginning-of-Sentence) A ’dog’ ’ball’

® Provide START, get all the probabilities P(next word | current word = START),
® Select one of these words according to their probabilities, let say *A°,

® Provide ’A’ and the past, and get P(next word | current word = *A’ & past),
® Repeat while generating the sentence ’A dog plays with a ball’

® Stop as soon as you have picked STOP.
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Other architectures
Example of a bidirectional RNN

*The? ‘milk’ STOP (]-‘.ml-of-Sentence)
0000100 | Y1 ... 0100000| Yg []()()l]()()l Y9
Wyn T Wyn f

Wbackmard Wbackv\ard
- -~ v |:| |:| |:
hy Wfol ward hs Wforwal d
E| |:| o |:|

Wia f Wi T th
1000000 | X7 LRI 0000010| g 0100000| g
START (Beginning-of-Sentence) ’drinking’ ‘milk’

Output at time ¢ may not only depend on the previous elements,
but also on future elements.

hi = g(Whame + Win™ho_1 + Wit Ry + by)
y: = softmax(Wyrh: + by)
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Other architectures
Example of a deep RNN with 3 hidden layers

The’ *milk’ STOP (End-of-Sentence)
VV,uh ¢ VV!/h f VVJ/h ¢
— 8 — — 3 — 3
2 Win g Wi g Wi
o —> | h{| —> —== 000 == —> | hg| —> — > hy | —>
23 23 23
Wh,h f Whh ¢ Vth ¢
— —— W2 — — 2
Py Whh 2 Whh
0f —> hl — B —> h’8 e
12 1—2
Wi f Win T
M W, M W) —
1 hh 1 hh
0f —> h’l — B —> h’8 e
Wiz A Wia Wia A
START (Beginning-of-Sentence) >drinking’ ‘milk’

We now have multiple layers per time step (a feature hierarchy).

Higher learning capacity but requires a lot more training data. o



Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Learning algorithm

Backpropagation through time (BPTT)
® Similar to standard backprop for training a traditional Neural Network,
® During training, unfold the network to the size of each training sequence,

® Take into account that parameters are shared by all steps in the network.

Forward through the entire sequence to compute the loss,
then backward through entire sequence to compute gradients.
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Image captioning — Recurrent Neural Networks (RNNs)

Language generating RNNs — Limitations

® Vanilla RNNs have difficulties learning long-term dependencies,

T ? 89

LA —{A A —— &+ A |

b0 o064

’I grew up in France... I speak fluent 777’

— We need the context of France from further back.

® One reason is again the vanishing/exploding gradient problems,

® Certain types of RNNs are specifically designed to get around them.

— Long-Short-Term Memory (LSTM)
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Image captioning — Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)
(Hochreiter & Schmidhuber, 1997)

NETOUTPUT

A Long Short-Term Memory (LSTM) network is a
particular type of recurrent network that works
slightly better in practice, owing to its more
powerful update equation and some appealing
back propagation dynamics.

® The LSTM units give the network memory cells with read, write and reset
operations. During training, the network can learn when it should
remember data and when it should throw it away.

® \Well-suited to learn from experience to classify, process and predict time
series when there are very long time lags of unknown size between
important events.

67



Image captioning — Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)

hi = g(Weazt + Wenhi—1 + be) < memory
y: = softmax(Wyrh: + by) < used as feature for prediction
*t

h,

W
h;
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Image captioning — Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)

gt = §(Weas + Wephie 1 + be) + input modulation gate

ct = gt < place memory in a cell unit ¢

h}/ = Ct¢

y: = softmax(Wyrh: + by) <+ but use h: to make prediction
Xt\ W cell

K@ G h

;  Input
Wer Modutation
ht —1i Gate
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Image captioning — Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)

gt = §(Weas + Wephie 1 + be) + input modulation gate
Cct =Ci—1+ gt < the cell keeps track of long term
hy=c

y: = softmax(Wyrh: + by)

~ W cell
7 @)

Ct
o) h,
;  Input
Wer Modutation
ht —1i Gate
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Image captioning — Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)

fr = sigm(Wiy,axt + Wiphi—1 + by) < forget gate

gt = §(Weas + Wephie 1 + be) + input modulation gate
ci=fi®@ci—1+ g < but can forget some of its memories
h=c (® = element wise product)

y: = softmax(Wyrh: + by)

X,

t\ Wee cell

9t Ct
h,

W Wioduiation
ht —1 Gate
W AW
Xt \ hy

68



Image captioning — Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)

1y = sigm(Wizxr + Wiphi—1 + b;) < input gate

fr = sigm(Wiy,axt + Wiphi—1 + by) < forget gate

gt = §(Weas + Wephie 1 + be) <+ input modulation gate
c=fiRci—1+1 g < and ignore some of the update
hi=c

y: = softmax(Wyrh: + by)

Xt h; 4
W,

Input Gate

h,

;  Inpu
Wer Modutation
Gate
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Image captioning — Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)

o = sigm(Wozx: + Worhe—1 + bo) <+ output gate
¢ = sigm(Wizxy + Winhi 1 + by) < input gate

.

fr = sigm(Wy,at + Wiphie—1 + by) < forget gate

gt = §(Weas + Wephie 1 + be) + input modulation gate
ct=fit®ci—1+ 1 ®g
hi =0, ® ¢ < weight memory for generating feature

y: = softmax(Wyrh: + by)

Xt h;_ Xt hy g
W,

Input Gate

Output Gate

cell

Wer Modutation
ht —1i Gate
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Image captioning — Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNN (LSTM)

o = sigm(Wozx: + Worhe—1 + bo) <+ output gate
¢ = sigm(Wizxy + Winhi 1 + by) < input gate

.

fr = sigm(Wy,at + Wiphie—1 + by) < forget gate

gt = §(Weas + Wephie 1 + be) + input modulation gate
ct=fit®ci—1+ 1 ®g
hi =0, ® ¢ < weight memory for generating feature

y: = softmax(Wyrh: + by)
Xy h,_; Xt hy g
Wi

Input Gate

Output Gate

cell

There are many variants, "
W Modulation

but this is the general idea. hy 4 e
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Image captioning — Recurrent Neural Networks (RNNs)

LSTM — Example of generated text

t f' t: tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
atfrst. plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

| train more
"Tmont thithey" fomesscerliund
Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more
Aftair fall unsuch that the hall for Prince Velzonski's that me of

her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

{ train more
"Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

Multi-layer LSTM trained on character sequences from texts by W. Shakespeare.

Further reading: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Image captioning — Combining CNN and RNN

Image Captioning — Combining CNN and RNN
DeeplmageSent (Karpathy et al., CVPR 2015)

“straw” “hat” END

only takes into account image features
in the first hidden state

b, = W;[CNNy_(I)]
hi = f(Whets + Whnhi—1 + by H1(t = 1) © b,
y; = softmax(Wophs + b,).

START “straw” “hat”

Multimodal Recurrent
Neural Network

® Plug a standard CNN (its last feature layer) to a vanilla RNN,
The CNN features are embedded to serve as initial memory state at ¢t = 1,
Perform end-to-end learning on a large corpus of captioned images,

Words and images are automatically embedded in a common feature space.
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Image captioning — Combining CNN and RNN

Image Captioning — Combining CNN and RNN
Show and Tell (Vinyals et al., CVPR 2015)

N
o
-2

=
=
%]
—

LSTM
LSTM

— —c0e

Zo T1 N

Ty 1
image SN-1

® Similar to DeeplmageSent, but use LSTM instead of a vanilla RNN,

® Learn to embed words to the feature space of the CNN (role of W),
® The CNN features are used as input at t = —1.
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Image captioning — Combining CNN and RNN

Image Captioning — Combining CNN and RNN

Successful results

A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in
suitcase on the floor branch grass with a frisbee the grass

A5

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track
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Image captioning — Combining CNN and RNN

Image Captioning — Combining CNN and RNN

Failure results

W A bird is perched on

A woman is holding a
cat in her hand

Amanina
baseball uniform
throwing a ball

A‘ woman standing on a
beach holding a surfboard

A person holding a
computer mouse on a desk
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Image captioning — Combining CNN and RNN

Image Captioning — Combining CNN and RNN
Show, Attend and Tell (Xu et al., 2015)

14x14 Feature Map A

bird
flying
over

a

body
of
water

1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image  Feature Extraction over the image word

generation
\_ J

Force the RNN to focus its attention at a different spatial location when
generating each word.
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Image captioning — Combining CNN and RNN

Image Captioning — Combining CNN and RNN
Show, Attend and Tell (Xu et al., 2015)

Distribution over

L locations
[ -
Features:
Image: LxD

HxWx3
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Image captioning — Combining CNN and RNN

Image Captioning — Combining CNN and RNN
Show, Attend and Tell (Xu et al., 2015)

Distribution over
L locations

Weighted
features: D

Weighted
combination
of features
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Image captioning — Combining CNN and RNN

Image Captioning — Combining CNN and RNN
Show, Attend and Tell (Xu et al., 2015)

Distribution over  Distribution
L locations over vocab

Image:
HxWx3

Weighted
features: D
Weighted
combination
of features

First word

75



Image captioning — Combining CNN and RNN

Image Captioning — Combining CNN and RNN
Show, Attend and Tell (Xu et al., 2015)

Distribution over  Distribution
over vocab

Feat \es
Image: s
HxWx3 Weighted
eatures: D
Weighted
combination

of features

75



Image captioning — Combining CNN and RNN

Image Captioning — Combining CNN and RNN
Show, Attend and Tell (Xu et al., 2015)

Distribution over  Distribution
over vocab

Feat \es
Image: s
HxWx3 Weighted
eatures: D
Weighted
combination

of features

75



Image captioning — Combining CNN and RNN

Image Captioning — Combining CNN and RNN
Show, Attend and Tell (Xu et al., 2015)

A woman is throwing a frisbee in a park.

A stop sign is on a road with a
mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.
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Visual Question Answering

Visual Question Answering: RNNs with Attention
(Zhu et al, 2016)

softmax

LST™M

T T \\ T 3 .
@which is \ the\ brown bread
\
\
- h\
\
m )

?

What kind of animal is in the photo?
A cat.

convolutional

attention terms a, feature maps C())

Why is the person holding a knife?
To cut the cake with.
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Visual Question Answering

Visual Question Answering: RNNs with Attention
(Zhu et al, 2016)

>»>»

What endangered animal
is featured on the truck?

A bald eagle.
A sparrow.

: A humming bird
: Araven.

: Where will the driver go

if turning right?

: Onto 24 % Rd.
: Onto 25 % Rd.
: Onto 23 % Rd.
: Onto Main Street.

Q:

>>>>

When was the picture
taken?

During a wedding.

: During a bar mitzvah.
: During a funeral.

During a Sunday church

Q:

>>>>

: An old man.

Who is under the
umbrella?

Two women.
A child

A husband and a wife.
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Questions?

Next class: Generation, super-resolution and style transfer

Sources, images courtesy and acknowledgment

L. Araujo dos Santos A. Horodniceanu R. Poisson
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G. Chen A. Karpathy S. Yeung

K. He F.-F. Li



