Comparing Generative versus Discriminative
models in a simple binary classification
problem

The purpose of this notebook is to compare two different approaches for binary classification. We
will consider a toy exampile: classifying male and female individuals based on their heights.

One model will be based on a generative model, the other one on a discriminative one.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import scipy.stats as sps

Data generation

First we will simulate a training set.

Let N be the number of individuals in the training set.

1 N = 10000

We want to simulate a population of individuals with

« feature: x the height,
« label: d the gender (0:female, 1:male),

We want to predict the label d from the feature x.

Following https://www.johndcook.com/blog/2008/11/25/distribution-of-adult-heights/
(https://www.johndcook.com/blog/2008/11/25/distribution-of-adult-heights/)

o xld = 0 is Gaussian distributed with mean 64 and standard deviation 3
« xld = 1 is Gaussian distributed with mean 70 and standard deviation 3
e pd=0)=.5
e pd=1)=.5

The following function generates N samples according to this model.
def simulate data(N):

d = np.random.choice([0, 1], size=N, p=(.5, .5))
X = np.random.randn(N);

SOk WN -

X[d==0]=64+3*X[d ==0];
x[d == 1] =70 + 3 * x[d == 1];
return x, d

We now generate a collection of N such pairs (x, d) that consititute our training set 7

https://www.johndcook.com/blog/2008/11/25/distribution-of-adult-heights/

In [4]:

In [5]:

In [6]:

In [7]:

1 x, d = simulate data(N)

Let us visualize the distribution of our population

plt.figure()
plt.hist(x, bins=100)
plt.xlabel('height"')
plt.ylabel('number")
plt.show()

U WNRE

250 1

200 1

150 1

number

100 1

Generative model

With a generative model we want to learn the distribution of heights within the female and male
classes to make a decision based on Bayes rule.

We will use the knowledge that the distribution within each class is Gaussian. Estimating these
distributions then boils down at estimating their means y = (u;, 44,) and standard deviations
o = (01,07).

np.array([x[d == k].mean() for k in [0, 1]11)

1 mu
' np.array([x[d == k].std() for k in [0, 1]])

2 sig

We can use these statistics to define the likelihoods:
p(xld = k) = N'(x; ., o1)

where N is the Gaussian distribution whose implementation is available in scipy.

1 1lik = lambda x, k : sps.norm(mu[k], sig[k]).pdf(x)

Next we need to estimate the priors p(d = 0) and p(d = 0), which are simply the frequencies
f = (fo,f1) of both classes.

In [8]: 1 freq = np.array([(d == k).mean() for k in [0, 1]])

We can use these statistics to define the joint distributions:

px,d = k) = p(d = k)pxld = k)

In [9]: 1 joint = lambda x, k : freq[k] * lik(x, k)

We can deduce the marginal density of x.

In [10]: 1 marginal = lambda x : sum(joint(x, 1) for 1 in range(2))

Let us check that all our models fit the distribution of our data

In [11]: nbins = 100

xgrid = np.linspace(x.min(), x.max(), nbins)

fig, axes = plt.subplots(ncols=3, figsize=[3*6.4, 4.8])
axes[0].hist(x[d == 0], bins=nbins, density=True, label='data')
axes[1l].hist(x[d == 1], bins=nbins, density=True, label='data')
axes[2].hist(x, bins=nbins, density=True, label='data')
axes[0].plot(xgrid, lik(xgrid, 0), label='p(x|female)")
axes[1l].plot(xgrid, lik(xgrid, 1), label='p(x|male)")
axes[2].plot(xgrid, marginal(xgrid), label='p(x)"')

10 axes[2].plot(xgrid, joint(xgrid, 0), label='p(x, female)')

11 axes[2].plot(xgrid, joint(xgrid, 1), label='p(x, male)"')

12 for k in range(3):

OoOoO~NOOUTE, WN -

13 axes[k].set xlabel('height x')
14 axes[k].set ylabel('normalized proportion')
15 axes[k].legend()

16 axes[0].set title('Class of female')

17 axes[1l].set title('Class of male')

18 axes[2].set title('Overall population')
19 plt.show()

Class of female Class of male Overall population

pix)
— pix, female)
—— pix, male)
. data

plx|female)
E data

plx|male)
B data

normalized proportion
normalized preportion
normalized preportion

height x height x height x

We can deduce the posterior distributions using Bayes rule

p(x,d=k)
p(x)

p(d = klx) =

In [12]: 1 post = lambda x, k : joint(x, k) / marginal(x)

Let us visualize the posterior probabilities as a function of the height x.

In [13]: 1 plt.figure()
2 plt.plot(xgrid, post(xgrid, 0), label='p(d=0 | x)")
3 plt.plot(xgrid, post(xgrid, 1), label='p(d=1 | x)")
4 plt.xlabel('height x')
5 plt.ylabel('probability"')
6 plt.legend()
7 plt.show()
10
0.8
206 A
= — pld=0 | x)
g pld=1 | x)
5 04 4
0.2
0.0
55 60 65 70 75 80

height x

We can now define our maximum a posterior classifier for d
fgen(X; Qgen) = arg m]flxpegen (d = klx)

where we made explicit the dependency of the posterior with the parameters of our model being:

Osen = (f1./2: M1, 12,01,02) subjectto fi +f, =1

In [14]:

f gen = lambda x: post(x, 1) > post(x, 0)

plt.figure()

plt.plot(xgrid, f gen(xgrid), label='$f {\mathrm{gen}}(x)$")
plt.xlabel('height x"')

plt.ylabel('prediction $y {\mathrm{gen}}$")

plt.legend()

plt.show()

coONNOUT R WN =

L0 — foenl)
0.3 4

0.6 1

04 4

prediction yaen

02

0.0 4

55 &0 65 70 i) 80
height x

Clearly this classifier makes a prediction for d based on a simple thresholding

1 ifx>t¢
0 otherwise

fgen(X; ggen) = {
where t & %(70 + 64) = 67. In fact ¢ converges in probablity to this value with respect to N.

Note that though the loss function is not explicit here, the formulas for the estimation of the
models result from optimizing the likelihood of the model parameters on (x, d):

max [] po,.c.d)

Ogen (x.,d)eT

Discriminative model

In the discriminative approach we do not focus on the distribution of the features. Instead we
directly impose a model on the posterior probability. For instance, based on our knowledge that
males are in average larger than women, we can choose the following model:

1 ifx>t¢t
0 otherwise

pd = 1lx) = {

and
pd=0lx)=1-pd = 1lx)

The maximum a posteriori classifier is then

In [15]:

Jais(x; Ogis = 1) = p(d = 1lx)

The parameter ;;, of that model is just the threshold.
We will consider the number of errors on the training set as our loss function

min#{(x,d) € T such that fy;s(x; O4is) 7# d}

dis
Clearly this optimization problem can be recasted as

min#{(x,d) € T suchthatx <randd =1} + #{(x,d) € T such that x > rand d = 0}
[N J . J

number of mis;crlassified males number of missglrassified females
Or equivalently
min Y d+ Y 1-d
! (x,d)ET x<t (x,d)ET x>t

Now if we denote by x;, the k-th smaller individual in 7 and d, its corresponding label, we can
show that any solution t* of the above optimization problem are given by

k N
t* € [xg+,x¢+41) Wwhere k™ =arg min de + Z 1 -4,
I<k<N=143 i=k+1

which leads us to consider the following code:

idx = np.argsort(x);
sorted x = x[idx];
sorted d = d[idx];
nb missclassified males = np.cumsum(sorted d)
nb missclassified females = \
np.sum(l-sorted d) - np.cumsum(l - sorted d)
nb errors = nb missclassified males + nb missclassified females
k = np.argmin(nb errors)
t star = (sorted x[k] + sorted x[k+1]) / 2

OCoo~NoOOUT,, WN -

Let us display the loss as a function of ¢.

In [16]: 1 plt.figure()
2 plt.plot(sorted x, nb missclassified males, \
3 label="'#missclassified males')
4 plt.plot(sorted x, nb missclassified females, \
5 label="'#missclassified females')
6 plt.plot(sorted x, nb errors, label='#errors')
7 plt.axvline(t star, color='k', label='optimal threshold $t"*$")
8 plt.xlabel('threshold t"')
9 plt.legend()
10 plt.show()
5000 4 —— #missclassified males
#Emissclassified females
4000 — Femo
— optimalthreshold t°
3000 A
2000 4
1000 -
0- —
55 B0 65 70 75 80
threshaold ¢
We can now define and visualize our classifier.
In [17]: 1 f dis = lambda x: x > t star
2
3 plt.figure()
4 plt.plot(xgrid, f dis(xgrid), label='$f {\mathrm{dis}}(x)$")
5 plt.xlabel('height x")
6 plt.ylabel('prediction $y {\mathrm{gen}}$")
7 plt.legend()
8 plt.show()
L0 — faalx)
08
£ 061
=
._E
o
B 044
[=1
02
0.0
55 &0 65 70 75 a0

In

In

In

In

[18]:

[19]:

[20]:

[21]:

Note that for such problems, a popular alternative is to model p(d = 1lx) with the logisitic
function, to consider the cross-entropy loss, and to optimize the parameter with gradient descent,
as in Assignment 1.

Comparisons

Let us compare the two models on a testing set.

1 Ntest = 1000000
2 xtest, dtest = simulate data(Ntest)

1 ytest = f gen(xtest)
2 gen perf = (ytest == dtest).mean()
3 print('Success rate of generative model: %.6f' % gen perf)

Success rate of generative model: 0.840958

1 ytest = f dis(xtest)
2 dis perf = (ytest == dtest).mean()
3 print('Success rate of discriminative model: %.6f' % dis perf)

Success rate of discriminative model: 0.840952

1 print('Best model is: %s' % \
2 ('generative' if gen perf > dis perf else 'discriminative'))

Best model is: generative

Discussion

In this scenario: data in low dimensional space (x € R), and perfect knowledge on the model of
data distribution, the two approaches reach almost the same performance (though the generative
seems to be winning more frequently).

This observation will rapidly become invalid as we consider a feature space of larger dimension
x € R, d > 1 orif the assumed generative model does not fit well the data.

This is because it is easier to model/estimate the shape of a separator than to model/estimate the
distribution of each classes, all the more in highdimensional spaces. In this example, estimating
the separator requires to estimate one parameter (the threshold ¢), but estimating the class
distributions requires to estimate 6 parameters (the means y,, standard deviations ¢;, and
frequencies f). The larger the number of parameters to estimate, the more challenging is the
estimation (learning subject to overfitting). Since overfitting is more common in high dimensional
feature spaces (curse of dimensionality), generative methods are usually defeated by
discriminative ones.

