
ECE 285 – MLIP – Assignment 0
Python, Numpy and Matplotlib

Adapted by Sneha Gupta, Shobhit Trehan and Charles Deledalle from CS228, itself adapted by
Volodymyr Kuleshov and Isaac Caswell from the CS231n Python tutorial by Justin Johnson
(http: // cs231n. github. io/ python-numpy-tutorial/). Last updated: October 18, 2019.

1 Getting started – Python, Platform and Jupyter

Python We are going to use python 3 and later PyTorch. For a quick brush-up on python refer
this website: https://docs.python.org/3/tutorial/ If you want (optional) to install and configure
python/conda/jupyter on your computer, please refer to the document “Setting up Python and Jupyter
with Conda”.

Platform We will use the UC San Diego Data Science/Machine Learning Platform (DSMLP).
If you already have a UCSD student account on this server dsmlp-login.ucsd.edu, use that account

to log in. Otherwise, a course specific account has been created for you. To find the course specific
account, go to the Account Lookup link under Tools at http://acms.ucsd.edu and click on the details
button. There are instructions for setting a password to the account.

Please read carefully http://go.ucsd.edu/2CZladZ.
If you are working outside campus, open first a VPN connection to UCSD (see instructions here

https://blink.ucsd.edu/technology/network/connections/off-campus/VPN/index.html).
Then, connect to the server. On Linux/Mac OS X, open a terminal and type

$ ssh yourlogin@dsmlp-login.ucsd.edu

If you are using Windows, install and configure PuTTY instead (https://www.putty.org/).
Once connected on the server, run the following two commands

$ launch-scipy-ml.sh

This will start a pod running a Jupyter Notebook. Finally, copy paste the URL given when starting the
pod into your web browser (you may have to close and re-open your browser or clear some cache).

Tip: Use SSH authorized keys.

Jupyter Congratulations, you have just started a Jupyter Notebook. Please refer to http://jupyter.

org/ for documentation. To start, go to File → New Notebook → Python 3. Replace Untitled (top
left corner, next to jupyter) by HelloWorld. Next type in the cell

print('HelloWorld!')

followed by Ctrl+Enter1. Use Ctrl+S to save your notebook (regularly). A file HelloWorld.ipynb

appeared in your pod session, and will remain there in future sessions until you delete it.

1For Mac-OS X users, here and in the following assignments: Ctrl= , Shift= and Alt= .

1

ssh yourlogin@dsmlp-login.ucsd.edu

launch-scipy-ml.sh

print('HelloWorld!')

http://cs231n.github.io/python-numpy-tutorial/
https://docs.python.org/3/tutorial/
http://acms.ucsd.edu
http://go.ucsd.edu/2CZladZ
https://blink.ucsd.edu/technology/network/connections/off-campus/VPN/index.html
https://www.putty.org/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://wiki.xmission.com/How_to_use_ssh_keys
http://jupyter.org/
http://jupyter.org/

Tips:

� Learn more about tips, tricks and shortcuts.

� Backup regularly your notebooks and work with your teammates using git.

� Avoid conflicts by clearing all outputs before committing: Cell → All Output → Clear.

For the following questions, please write your code and answers directly in your notebook. Organize
your notebook with headings, markdown and code cells (following the numbering of the questions).

2 Numpy

Numpy is the core library for scientific computing in Python. It provides a high-performance multidimen-
sional array object, and tools for working with these arrays. If you are already familiar with MATLAB,
you might find this tutorial useful to get started with Numpy.

2.1 Arrays

A numpy array is a grid of values, all of the same type, and is indexed by a tuple of nonnegative integers.
The number of dimensions is the rank of the array; the shape of an array is a tuple of integers giving the
size of the array along each dimension. We can initialize numpy arrays from nested Python lists, and
access elements using square brackets.

1. Run the following2:

import numpy as np

a = np.array([1, 2, 3])

print(type(a))
print(a.shape)
print(a[0], a[1], a[2])

a[0] = 5

What are the rank, shape of a, and the current values of a[0], a[1], a[2]?

2. Run the following:

b = np.array([[1, 2, 3], [4, 5, 6]])

What are the rank, shape of b, and the current values of b[0, 0], b[0, 1], b[1, 0]?

3. Numpy also provides many functions to create arrays. Assign the correct comment to each of the
following instructions:

2Clicking or double-ckicling on the icon on the right of the code snippet opens the code in an editor. This can be useful
if you want to copy paste this code. This unfortunately works with only a few pdf viewers, such as Acrobat Reader and
GNOME Evince.

2

import numpy as np

a = np.array([1, 2, 3])
print(type(a))
print(a.shape)
print(a[0], a[1], a[2])
a[0] = 5

b = np.array([[1, 2, 3], [4, 5, 6]])

http://maxmelnick.com/2016/04/19/python-beginner-tips-and-tricks.html
http://www.numpy.org/
http://scipy.github.io/old-wiki/pages/NumPy_for_Matlab_Users

a = np.zeros((2,2)) # a constant array

b = np.ones((1,2)) # an array of all ones

c = np.full((2,2), 7) # an array filled with random values

d = np.eye(2) # an array of all zeros

e = np.random.random((2,2)) # a 2x2 identity matrix

Hint: use the print command to check your answer.

You can read about other methods of array creation in the documentation.

2.2 Array indexing

Slicing: Numpy offers several ways to index into arrays. Similar to Python lists, numpy arrays can be
sliced. Since arrays may be multidimensional, you must specify a slice for each dimension of the array:

4. Run the following

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

b = a[:2, 1:3]

What are the shape of a and b? What are the values in b?

5. A slice of an array is a view into the same data. Follow the comments in the following snippet

print(a[0, 1]) # Prints "2"

b[0, 0] = 77

print(a[0, 1])

What does the last line print? Does modifying b modify the original array?

6. You can also mix integer indexing with slice indexing. However, doing so will yield an array of lower
rank than the original array. Note that this is quite different from the way that MATLAB handles
array slicing. Create the following rank 2 array with shape (3, 4):

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

There are two ways of accessing the data in the middle row (or column) of the array. Mixing integer
indexing with slices yields an array of lower rank, while using only slices yields an array of the same
rank as the original array. Run the following:

row_r1 = a[1, :] # Rank 1 view of the second row of a

row_r2 = a[1:2, :] # Rank 2 view of the second row of a

print(row_r1, row_r1.shape) # Prints "[5 6 7 8] (4,)"

print(row_r2, row_r2.shape) # Prints "[[5 6 7 8]] (1, 4)"

col_r1 = a[:, 1]

col_r2 = a[:, 1:2]

What are the values and shapes of col r1 and col r2?

3

a = np.zeros((2,2)) # a constant array
b = np.ones((1,2)) # an array of all ones
c = np.full((2,2), 7) # an array filled with random values
d = np.eye(2) # an array of all zeros
e = np.random.random((2,2)) # a 2x2 identity matrix

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
b = a[:2, 1:3]

print(a[0, 1]) # Prints "2"
b[0, 0] = 77
print(a[0, 1])

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

row_r1 = a[1, :] # Rank 1 view of the second row of a
row_r2 = a[1:2, :] # Rank 2 view of the second row of a
print(row_r1, row_r1.shape) # Prints "[5 6 7 8] (4,)"
print(row_r2, row_r2.shape) # Prints "[[5 6 7 8]] (1, 4)"
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]

https://docs.scipy.org/doc/numpy/user/basics.creation.html#arrays-creation

Integer array indexing: When you index into numpy arrays using slicing, the resulting array view
will always be a subarray of the original array. In contrast, integer array indexing create new arrays using
the data from another array.

7. Run the following:

a = np.array([[1,2], [3, 4], [5, 6]])

print(a[[0, 1, 2], [0, 1, 0]])

print(np.array([a[0, 0], a[1, 1], a[2, 0]]))

Are the two printed arrays equivalent?

8. When using integer array indexing, you can duplicate several times the same element from the
source array. Compare the following instructions:

b = a[[0, 0], [1, 1]]

c = np.array([a[0, 1], a[0, 1]])

9. One useful trick with integer array indexing is selecting or mutating one element from each row of
a matrix. Run the following code

a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

b = np.array([0, 2, 0, 1])

print(a[np.arange(4), b])

a[np.arange(4), b] += 10

print(a)

What do you observe?

Boolean array indexing: Boolean array indexing lets you pick out arbitrary elements of an array.
Frequently this type of indexing is used to select the elements of an array that satisfy some condition.

10. Run the following

a = np.array([[1,2], [3, 4], [5, 6]])

bool_idx = (a > 2)

What is the result stored in bool idx?
Run the following:

print(a[bool_idx])
print(a[a > 2])

What are the values printed? What is their shape?

For brevity we have left out a lot of details about numpy array indexing; if you want to know more
you should read the documentation.

4

a = np.array([[1,2], [3, 4], [5, 6]])
print(a[[0, 1, 2], [0, 1, 0]])
print(np.array([a[0, 0], a[1, 1], a[2, 0]]))

b = a[[0, 0], [1, 1]]
c = np.array([a[0, 1], a[0, 1]])

a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
b = np.array([0, 2, 0, 1])
print(a[np.arange(4), b])
a[np.arange(4), b] += 10
print(a)

a = np.array([[1,2], [3, 4], [5, 6]])
bool_idx = (a > 2)

print(a[bool_idx])
print(a[a > 2])

https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

2.3 Datatypes

Every numpy array is a grid of elements of the same type. Numpy provides a large set of numeric
datatypes that you can use to construct arrays. Numpy tries to guess a datatype when you create an
array, but functions that construct arrays usually also include an optional argument to explicitly specify
the datatype.

11. Here is an example

x = np.array([1, 2]) # Let numpy choose the datatype

print(x.dtype)

y = np.array([1.0, 2.0]) # Let numpy choose the datatype

print(y.dtype)

z = np.array([1, 2], dtype=np.int32) # Force a particular datatype

print(z.dtype)

What are the datatypes of x, y, z?

You can read all about numpy datatypes in the documentation.

2.4 Array math

Basic mathematical functions operate elementwise on arrays, and are available both as operator overloads
and as functions in the numpy module:

12. Give the output for each print statement in the following code snippet

x = np.array([[1,2],[3,4]], dtype=np.float64)

y = np.array([[5,6],[7,8]], dtype=np.float64)

Elementwise sum; both produce the array

print(x + y)

print(np.add(x, y))

Elementwise difference; both produce the array

print(x - y)

print(np.subtract(x, y))

Elementwise product; both produce the array

print(x * y)

print(np.multiply(x, y))

Elementwise division; both produce the array

print(x / y)

print(np.divide(x, y))

Elementwise square root; produces the array

print(np.sqrt(x))

5

x = np.array([1, 2]) # Let numpy choose the datatype
print(x.dtype)

y = np.array([1.0, 2.0]) # Let numpy choose the datatype
print(y.dtype)

z = np.array([1, 2], dtype=np.int32) # Force a particular datatype
print(z.dtype)

https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html

Note that unlike MATLAB, * is elementwise multiplication, not matrix multiplication. We instead
use the dot function to compute inner products of vectors, to multiply a vector by a matrix, and
to multiply matrices. dot is available both as a function in the numpy module and as an instance
method of array objects.

13. What are the mathematical operations performed by the last two instructions?

v = np.array([9,10])

w = np.array([11, 12])

print(v.dot(w))
print(np.dot(v, w))

14. What are the mathematical operations performed in the snippet below?

x = np.array([[1,2],[3,4]])

print(x.dot(v))
print(np.dot(x, v))

15. Write a code to compute the product of the matrices x with the following matrix y

y = np.array([[5,6,7],[7,8,9]])

Can you write the same code for the product of y with x?

Numpy provides many useful functions for performing computations on arrays; a useful one is sum:

x = np.array([[1,2],[3,4]])

print(np.sum(x)) # Compute sum of all elements; prints "10"

print(np.sum(x, axis=0)) # Compute sum of each column; prints "[4 6]"

print(np.sum(x, axis=1)) # Compute sum of each row; prints "[3 7]"

You can find the full list of mathematical functions provided by numpy in the documentation. Apart from
computing mathematical functions using arrays, we frequently need to reshape or otherwise manipulate
data in arrays. The simplest example of this type of operation is transposing a matrix; to transpose a
matrix, simply use the T attribute of an array object.

16. In the following

x = np.array([[1,2,3], [3,4,5]])

print(x)
print(x.T)

What is the transpose of x? How is it different from x?

Numpy provides many more functions for manipulating arrays; you can see the full list in the docu-
mentation.

6

x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)

Elementwise sum; both produce the array
print(x + y)
print(np.add(x, y))

Elementwise difference; both produce the array
print(x - y)
print(np.subtract(x, y))

Elementwise product; both produce the array
print(x * y)
print(np.multiply(x, y))

Elementwise division; both produce the array
print(x / y)
print(np.divide(x, y))

Elementwise square root; produces the array
print(np.sqrt(x))

v = np.array([9,10])
w = np.array([11, 12])
print(v.dot(w))
print(np.dot(v, w))

x = np.array([[1,2],[3,4]])
print(x.dot(v))
print(np.dot(x, v))

y = np.array([[5,6,7],[7,8,9]])

x = np.array([[1,2],[3,4]])

print(np.sum(x)) # Compute sum of all elements; prints "10"
print(np.sum(x, axis=0)) # Compute sum of each column; prints "[4 6]"
print(np.sum(x, axis=1)) # Compute sum of each row; prints "[3 7]"

x = np.array([[1,2,3], [3,4,5]])
print(x)
print(x.T)

http://docs.scipy.org/doc/numpy/reference/routines.math.html
http://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html
http://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html

2.5 Broadcasting

Broadcasting is a powerful mechanism that allows numpy to work with arrays of different shapes when
performing arithmetic operations. Frequently we have a smaller array and a larger array, and we want to
use the smaller array multiple times to perform some operation on the larger array.

17. Complete the following code in order to add the vector v to each row of a matrix x:

x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

v = np.array([1,0,1])

y = np.zeros(x.shape)

for i in range(x.shape[0]):
for j in range(x.shape[1]):

y[i,j] = # complete

18. The previous solution works well; however when the matrix x is very large, computing an explicit
loop in Python could be slow. An alternative is to use tile. Run the following and interpret the
result

vv = np.tile(v, (4, 1))

print(vv)

Next, complete the code to compute y from x and vv without explicit loops.

19. Numpy broadcasting allows us to perform this computation without actually creating multiple copies
of v. This is simply obtained as follows

x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

v = np.array([1, 0, 1])

y = x + v # Add v to each row of x using broadcasting

The line y = x + v works even though x has shape (4, 3) and v has shape (3,) due to broad-
casting; this line works as if v actually had shape (4, 3), where each row was a copy of v, and the
sum was performed elementwise. Broadcasting two arrays together follows these rules:

(a) If the arrays do not have the same rank, prepend the shape of the lower rank array with 1s
until both shapes have the same length.

(b) The two arrays are said to be compatible in a dimension if they have the same size in the
dimension, or if one of the arrays has size 1 in that dimension.

(c) The arrays can be broadcast together if they are compatible in all dimensions.

(d) After broadcasting, each array behaves as if it had shape equal to the elementwise maximum
of shapes of the two input arrays.

(e) In any dimension where one array had size 1 and the other array had size greater than 1, the
first array behaves as if it were copied along that dimension.

For more details about broadcasting please refer to the documentation or this explanation. Functions
that support broadcasting are known as universal functions. You can find the list of all universal
functions in the documentation.

Compute the outer product of v and w using broadcasting

7

x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1,0,1])
y = np.zeros(x.shape)

for i in range(x.shape[0]):
 for j in range(x.shape[1]):
 y[i,j] = # complete

vv = np.tile(v, (4, 1))
print(vv)

x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = x + v # Add v to each row of x using broadcasting

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://wiki.scipy.org/EricsBroadcastingDoc
http://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs

v = np.array([1,2,3]) # v has shape (3,)

w = np.array([4,5]) # w has shape (2,)

Hint: use np.reshape(v, (3, 1)).

20. Add v to each row of x using broadcasting

x = np.array([[1,2,3], [4,5,6]])

21. Add w to each column of x using broadcasting.

22. Numpy treats scalars as arrays of shape (). Write a code to multiply x with 2.

Broadcasting typically makes your code more concise and faster, so you should strive to use it where
possible.

2.6 Numpy Documentation

This brief overview has touched on many of the important things that you need to know about numpy,
but is far from complete. Check out the numpy reference to find out much more about numpy.

3 Matplotlib

Matplotlib is a plotting library. In this section, we give a brief introduction to the matplotlib.pyplot

module, which provides a plotting system similar to that of MATLAB.

3.1 Plotting

An important function in matplotlib is plot, which allows you to plot 2D graphs. Here is a simple
example:

import numpy as np

import matplotlib.pyplot as plt

Compute the x and y coordinates for points on a sine curve

x = np.arange(0, 3 * np.pi, 0.1)

y = np.sin(x)

Plot the points using matplotlib

plt.plot(x, y)

plt.show() # You must call plt.show() to make graphics appear.

23. Run the above example and check that it produces the following plot:

24. Modify the above example by adding these extra instructions before plt.show()

plt.xlim(0, 3 * np.pi)

plt.xlabel('x')

plt.ylabel('y')

plt.title('Sinusoidal curve(s)')

plt.legend(['Sine'])

8

v = np.array([1,2,3]) # v has shape (3,)
w = np.array([4,5]) # w has shape (2,)

x = np.array([[1,2,3], [4,5,6]])

import numpy as np
import matplotlib.pyplot as plt

Compute the x and y coordinates for points on a sine curve
x = np.arange(0, 3 * np.pi, 0.1)
y = np.sin(x)

Plot the points using matplotlib
plt.plot(x, y)
plt.show() # You must call plt.show() to make graphics appear.

http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/numpy/reference/

0 2 4 6 8
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Interpret each of these instructions.

25. Write a code to plot both sine and cosine curves in the same plot with proper legend.

You can read much more about the plot function in the documentation.

3.2 Subplots

You can display different plots in the same figure using the subplot function. Here is an example:

x = np.arange(0, 3 * np.pi, 0.1)

y_sin = np.sin(x)

fig, axes = plt.subplots(nrows=2)

axes[0].plot(x, y_sin)

axes[0].set_xlim(0, 3 * np.pi)

axes[0].set_title('Sine')

plt.tight_layout()

fig.show()

26. Complete the above code to create a second subplot in the same grid representing the cosine function.
This is how your result should look like.

You can read much more about the subplot function in the documentation.

9

plt.xlim(0, 3 * np.pi)
plt.xlabel('x')
plt.ylabel('y')
plt.title('Sinusoidal curve(s)')
plt.legend(['Sine'])

x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)

fig, axes = plt.subplots(nrows=2)
axes[0].plot(x, y_sin)
axes[0].set_xlim(0, 3 * np.pi)
axes[0].set_title('Sine')

plt.tight_layout()
fig.show()

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.subplot

3.3 Images

27. From your terminal, in your pod session, create an assets directory and transfer the image cat.jpg

into it

$ mkdir assets

$ cp /datasets/ee285f-public/cat.jpg assets/

or you can instead create a symbolic link

$ ln -s /datasets/ee285f-public/cat.jpg assets/cat.jpg

28. Run the following code and report your result.

import numpy as np

import imageio

import matplotlib.pyplot as plt

img = imageio.imread('assets/cat.jpg')

img_tinted = img * [1, 0.95, 0.9]

Show the original image. Note that img has type uint8. In this case, imshow

expects black to be [0, 0, 0] and white to be [255, 255, 255].

fig, axes = plt.subplots(ncols=4, figsize=(12,4))

axes[0].imshow(img)

Show the tinted image. Note that img_tinted has type float64. Now imshow

expects black to be [0, 0, 0] and white to be [1, 1, 1]. Compare and

interpret the three following solutions

axes[1].imshow(img_tinted)

axes[2].imshow(np.uint8(img_tinted))

axes[3].imshow(img_tinted / 255)

fig.show()

If you get the error ImportError: No module named imageio, install the missing module imageio
from your terminal as

$ pip install --user imageio

and you may have to restart the kernel of your Jupyter Notebook: Kernel → Restart.

10

mkdir assets
cp /datasets/ee285f-public/cat.jpg assets/

ln -s /datasets/ee285f-public/cat.jpg assets/cat.jpg

import numpy as np
import imageio
import matplotlib.pyplot as plt

img = imageio.imread('assets/cat.jpg')
img_tinted = img * [1, 0.95, 0.9]

Show the original image. Note that img has type uint8. In this case, imshow
expects black to be [0, 0, 0] and white to be [255, 255, 255].
fig, axes = plt.subplots(ncols=4, figsize=(12,4))
axes[0].imshow(img)

Show the tinted image. Note that img_tinted has type float64. Now imshow
expects black to be [0, 0, 0] and white to be [1, 1, 1]. Compare and
interpret the three following solutions
axes[1].imshow(img_tinted)
axes[2].imshow(np.uint8(img_tinted))
axes[3].imshow(img_tinted / 255)

fig.show()

pip install --user imageio

