
ECE 285 – MLIP – Assignment 1
Backpropagation

Written by Sneha Gupta, Shobhit Trehan and Charles Deledalle. Last updated: October 18, 2019.

This assignment focuses on multiclass classification on the MNIST Dataset. You will learn to develop a
simple implementation for artificial neural networks and backpropagation algorithm. The MNIST Dataset
consists of labeled images of handwritten digits from 0 to 9. Each image is 28 by 28 pixels (784 pixels).
Read about the dataset here http://yann.lecun.com/exdb/mnist/.

1 Artificial Neural Networks (ANNs) and backpropagation?

We will classify images into ten digits by using an artificial neural network. Let x ∈ R784×N be a collection
of N input images (stacked in columns) and y ∈ [0, 1]10×N be the collection of our class predictions made
for all images and encoded by so-called one-hot codes meant to approximate class probabilities, i.e.:

yi,j ≈ P(the j-th image in x represents the digit i), for 1 ≤ i ≤ 10 and 1 ≤ j ≤ N.

A neural network makes the prediction y from the collection x of images by forward propagation which
is defined recursively as follows

y = hL with hk = gk(ak), ak = Wkhk−1 + bk and h0 = x

with L the number of layers, k the layer index, gk a so-called activation function, hk an array of N hidden
feature vectors (also stacked in columns), ak an array of N vectors of activations (also called potentials),
Wk a matrix of synaptic weights and bk a vector of biases. We will use a shallow neural network meaning
that we will consider L = 2. The hidden layer will use ReLU activation function and the output layer will
use Softmax (see definitions in Section 4).

The matrices Wk and vectors bk will be learned/estimated from the MNIST training set by using
logistic regression. This consists of minimizing the cross-entropy loss, between the collection d of desired
one-hot codes (dij = 1 if the j-th image represents the digit i, 0 otherwise) and the prediction y, which
is defined as follows

E = −
N∑
j=1

10∑
i=1

dij log yij .

The optimization will be performed by gradient descent with backpropagation that can be implemented
iteratively, for t = 0, 1, . . . , and some initializations W 0

k and b0k, as:

W t+1
k = W t

k − γ∇Wk
Et

bt+1
k = btk − γ∇bkE

t

with ∇Wk
E = δkh

T
k−1

and ∇bkE = δk1N

and δk =

[
∂gk(ak)

∂ak

]T
× ek where ek =

{
∇yE if k is an output layer

W T
k+1δk+1 otherwise

where the notations are:

1

http://yann.lecun.com/exdb/mnist/

� t: iteration index of gradient descent,

� γ: learning rate of gradient descent,

� Wk: matrix of weights at layer k,

� bk: vector of biases at layer k,

� x: matrix with the N training input vectors in columns,

� hk = gk(ak): matrix with all hidden outputs at layer k in columns,

� ak = Wkhk−1 + bk: matrix with all weighted sums at layer k in columns,

� gk: activation function at layer k,

� 1N : column vector of size N containing only ones.

In the following, for simplicity, we will drop the indices k and t.

This was a very short description but neural networks and backpropagation will be studied more in
depth during the class (Chapter 2).

2 Getting started

First of all, connect to DSMLP (dsmlp-login.ucsd.edu server), start a pod and connect to your Jupyter
Notebook from your web browser (go back to Assignment 0 for more details). Create a new notebook
assignment1.ipynb and import

import numpy as np

from matplotlib import pyplot

For the following questions, please write your code and answers directly in your notebook. Organize
your notebook with headings, markdown and code cells (following the numbering of the questions).

3 Read MNIST Data

The MNIST dataset is already installed on DSMLP in the directory /datasets/MNIST/. The data can be
loaded using a small dedicated package /datasets/ee285f-public/MNISTtools.py. From your terminal,
create a symbolic link on this package into your working/current directory

$ ln -s /datasets/ee285f-public/MNISTtools.py .

Back to your Jupyter Notebook, you can now import its functions as:

import MNISTtools

This package contains two functions: load and show. You can display their description using the Python
command help:

help(MNISTtools.load)
help(MNISTtools.show)

2

import numpy as np
from matplotlib import pyplot

ln -s /datasets/ee285f-public/MNISTtools.py .

import MNISTtools

You can also type MNISTtools.load and press Shift + Tab.

1. Using MNISTtools.load, store the images and labels from the training datasets into two variables,
respectively, xtrain and ltrain. What are the shapes of both variables? What is the size of the
training dataset? What is the feature dimension?

2. Display the image of index 42 and check that its content corresponds to its label.

3. What is the range of xtrain (minimum and maximum values)? What is the type of xtrain?

4. Create a function

def normalize_MNIST_images(x):

that takes a collection of images (such as xtrain) and returns a modified version mapping the range
[0, 255] into the range [−1, 1] of type float32. Update xtrain accordingly.

Hint: convert a Numpy array x from int8 to float32 using x.astype(np.float32).

5. Using integer array indexing, complete the following function

def label2onehot(lbl):

d = np.zeros((lbl.max() + 1, lbl.size))

d[COMPLETE, np.arange(lbl.size)] = 1

return d

such that dtrain = label2onehot(ltrain) will create a Numpy array dtrain of one-hot codes
stacked in columns (with shape (10, 60000)). Make sure that the one-hot code dtrain[:,42]

corresponds to ltrain[42].

6. Complete the following function

def onehot2label(d):

lbl = d.argmax(axis=COMPLETE)

return lbl

such that ltrain == onehot2label(dtrain).

4 Activation functions

For our digit multiclass classification, we will use the softmax activation function for the output layer
(with 10 units). Given a vector a ∈ R10 (obtained by forward propagation), softmax will output a vector
y ∈ [0, 1]10, where each element yi represents the probability that x ∈ R784 is in class i. The relation
between a and y is given for all i ∈ [1, 10] by

yi = g(a)i =
exp(ai)∑10
j=1 exp(aj)

7. When using exponential functions, one should make sure that the input won’t be too large or you
may observe numerical issues (apparition of Inf and subsequently of NaN). A simple trick to get rid
of this problem is based on the following observation

yi = g(a)i =
exp(ai −M)∑10
j=1 exp(aj −M)

where M = max
j=1...10

aj

3

help(MNISTtools.load)
help(MNISTtools.show)

def normalize_MNIST_images(x):

def label2onehot(lbl):
 d = np.zeros((lbl.max() + 1, lbl.size))
 d[COMPLETE, np.arange(lbl.size)] = 1
 return d

def onehot2label(d):
 lbl = d.argmax(axis=COMPLETE)
 return lbl

As all inputs of the exponentials will be smaller than 0 and one of them will be exactly 0, you won’t
encounter numerical issues. Based on this trick, create a function

def softmax(a):

that returns an array whose columns are the 60, 000 predictions y from an array whose columns are
the 60, 000 vectors a. Hint: use Broadcasting and the methods .max(axis=0) and .sum(axis=0).

8. Show that
∂g(a)i
∂ai

= g(a)i(1− g(a)i).

9. Show that
∂g(a)i
∂aj

= −g(a)ig(a)j for j 6= i.

10. Given a vector e ∈ R10 (obtained during backward propagation), backprop algorithm have to
compute

δ =

[
∂g(a)

∂a

]T
× e

where × denotes here the matrix vector product. The matrix ∂g(a)
∂a is the Jacobian matrix defined

as

∂g(a)

∂a
=


∂g(a)1
∂a1

∂g(a)1
∂a2

. . . ∂g(a)1
∂a10

∂g(a)2
∂a1

∂g(a)2
∂a2

. . . ∂g(a)2
∂a10

...
∂g(a)10
∂a1

∂g(a)10
∂a2

. . . ∂g(a)10
∂a10


When the activation is element-wise (g(a)i = g(ai)), the Jacobian is diagonal and the update of
δ is simply an element wise product between g′(ai) and ei (see Chapter 2). But softmax is not
an element-wise function and its Jacobian is not diagonal. Nevertheless, it enjoys some interesting
properties.

Using the previous question, prove that the Jacobian of softmax is symmetric and that

δ = g(a)⊗ e− 〈g(a), e〉 g(a)

where ⊗ is the element-wise product.
(Remark that the expression is not that much different from the derivative of the sigmoid logistic
function g′(a) = g(a)(1 − g(a)). This is because softmax is a multivariate generalization of the
sigmoid logistic function.)

Based on this formula, write a function

def softmaxp(a, e):

that, given an array whose columns are the vectors a and an array whose columns are vectors e,
returns an array whose columns are the vectors δ.

Hint: call softmax(a).

11. Since the Jacobian is symmetric, the update of δ corresponds to the directional derivative of g at
point a in the direction e:

δ =
∂g(a)

∂a
× e = lim

ε→0

g(a+ εe)− g(a)

ε

4

def softmax(a):

def softmaxp(a, e):

Based on this formula, you can check your implementation by numerical approximations (finite
difference). Complete the following script to check your function softmaxp as follows

eps = 1e-6 # finite difference step

a = np.random.randn(10, 200) # random inputs

e = np.random.randn(10, 200) # random directions

diff = softmaxp(a, e)

diff_approx = COMPLETE

rel_error = np.abs(diff - diff_approx).mean() / np.abs(diff_approx).mean()
print(rel_error, 'should be smaller than 1e-6')

12. For the hidden layers, we will be using ReLU(a)i = max(ai, 0). Write two functions:

def relu(a):

COMPLETE

def relup(a, e):

COMPLETE

implementing ReLU and its directional derivative. Check your implementation based on numerical
approximations.

5 Backpropagation

We are now ready to implement our shallow network. The (single) hidden layer between the input and
output will consist of Nh = 64 units with the relu activation function. The output layer will consist of
No = 10 units with the softmax activation function. The input layer is of dimension Ni = 784.

13. Use the following function to create/initialize your shallow network as follows

def init_shallow(Ni, Nh, No):

b1 = np.random.randn(Nh, 1) / np.sqrt((Ni+1.)/2.)

W1 = np.random.randn(Nh, Ni) / np.sqrt((Ni+1.)/2.)

b2 = np.random.randn(No, 1) / np.sqrt((Nh+1.))

W2 = np.random.randn(No, Nh) / np.sqrt((Nh+1.))

return W1, b1, W2, b2

Ni = xtrain.shape[0]

Nh = 64

No = dtrain.shape[0]

netinit = init_shallow(Ni, Nh, No)

These types of initializations are called He and Xavier initializations, respectively, and will be
explained later during the class.

14. Complete the function forwardprop shallow to evaluate the prediction of our initial network:

def forwardprop_shallow(x, net):

W1 = net[0]

b1 = net[1]

5

eps = 1e-6 # finite difference step
a = np.random.randn(10, 200) # random inputs
e = np.random.randn(10, 200) # random directions
diff = softmaxp(a, e)
diff_approx = COMPLETE
rel_error = np.abs(diff - diff_approx).mean() / np.abs(diff_approx).mean()
print(rel_error, 'should be smaller than 1e-6')

def relu(a):
 COMPLETE

def relup(a, e):
 COMPLETE

def init_shallow(Ni, Nh, No):
 b1 = np.random.randn(Nh, 1) / np.sqrt((Ni+1.)/2.)
 W1 = np.random.randn(Nh, Ni) / np.sqrt((Ni+1.)/2.)
 b2 = np.random.randn(No, 1) / np.sqrt((Nh+1.))
 W2 = np.random.randn(No, Nh) / np.sqrt((Nh+1.))
 return W1, b1, W2, b2

Ni = xtrain.shape[0]
Nh = 64
No = dtrain.shape[0]
netinit = init_shallow(Ni, Nh, No)

W2 = net[2]

b2 = net[3]

a1 = W1.dot(x) + b1

COMPLETE

return y

yinit = forwardprop_shallow(xtrain, netinit)

that produces an array whose columns are vectors y corresponding to the predictions obtained for
each column x given in arguments.

15. Complete the function eval loss:

def eval_loss(y, d):

COMPLETE

print(eval_loss(yinit, dtrain), 'should be around .26')

that given your predictions y and the desired one-hot codes d, computes the average cross-entropy
loss (averaged over both the training samples and the vector dimension). Recall that the cross-
entropy for K = 10 classes of a vector y against a vector d is

E = −
10∑
i=1

di log yi

16. Complete the function eval perfs:

def eval_perfs(y, lbl):

COMPLETE

print(eval_perfs(yinit, ltrain))

that given your predictions y and the desired labels lbl, computes the percentage of misclassified
samples. Interpret the result.

Hint: use the function onehot2label and do not use loops.

17. Complete the following function update shallow

def update_shallow(x, d, net, gamma=.05):

W1 = net[0]

b1 = net[1]

W2 = net[2]

b2 = net[3]

Ni = W1.shape[1]

Nh = W1.shape[0]

No = W2.shape[0]

gamma = gamma / x.shape[1] # normalized by the training dataset size

6

def forwardprop_shallow(x, net):
 W1 = net[0]
 b1 = net[1]
 W2 = net[2]
 b2 = net[3]

 a1 = W1.dot(x) + b1
 COMPLETE

 return y

yinit = forwardprop_shallow(xtrain, netinit)

def eval_loss(y, d):
 COMPLETE

print(eval_loss(yinit, dtrain), 'should be around .26')

def eval_perfs(y, lbl):
 COMPLETE

print(eval_perfs(yinit, ltrain))

COMPLETE

return W1, b1, W2, b2

such that it performs one backpropagation update for your shallow neural network. Recall that the
inputs x and d are going to be arrays with 60,000 columns corresponding to the vectors of images
and the vectors of one-hot codes respectively. Show that

(∇yE)i = −di
yi

Hint: Takes inspiration of the code described in Chapter 2, slide 67. Use the functions softmax,
softmaxp relu and relup.

18. Using update shallow, complete the function backprop shallow

def backprop_shallow(x, d, net, T, gamma=.05):

lbl = onehot2label(d)

for t in range(T):
COMPLETE TO UPDATE NET

COMPLETE TO DISPLAY LOSS AND PERFS

return net

that performs T updates of the network and print the loss and the percentage of training errors at
each iteration of backprop. Start testing it using T = 2 iterations

nettrain = backprop_shallow(xtrain, dtrain, netinit, 2)

When your code starts working, increase the number of iterations to T = 5, and if it is still working
try T = 20. The loss and training errors should decrease (with some fluctuations).

What percentage of training errors do you reach? (Feel free to increase even more the number of
iterations: with T = 100 you should reach about 13% of training errors)

19. Load the testing dataset into two variables xtest and ltest. What is the size of the testing set?
Evaluate the performance of your network on the testing dataset.

20. We will now implement a variant of backpropagation based on stochastic/minibatch gradient descent
(we will explain later this variant during the class). The algorithm is very similar to backprop but
instead of updating the weights based on the 60,000 data points at once, we will partition our
training sets on random blocks of size B = 100 (called minibatches) and update successively the
weights and biases based on the error of each minibatch. The number of updates is then TN/B.
An epoch corresponds to a succession of updates where all minibatches have been processed. The
parameter T is then referred to as the number of epochs. Note that at each epoch we randomly
resample new mini-batches. Using update shallow, interpret each instruction and complete the
function backprop minibatch shallow:

def backprop_minibatch_shallow(x, d, net, T, B=100, gamma=.05):

N = x.shape[1]

NB = int((N+B-1)/B)
lbl = onehot2label(d)

7

def update_shallow(x, d, net, gamma=.05):
 W1 = net[0]
 b1 = net[1]
 W2 = net[2]
 b2 = net[3]
 Ni = W1.shape[1]
 Nh = W1.shape[0]
 No = W2.shape[0]

 gamma = gamma / x.shape[1] # normalized by the training dataset size

 COMPLETE

 return W1, b1, W2, b2

def backprop_shallow(x, d, net, T, gamma=.05):
 lbl = onehot2label(d)
 for t in range(T):
 COMPLETE TO UPDATE NET
 COMPLETE TO DISPLAY LOSS AND PERFS
 return net

nettrain = backprop_shallow(xtrain, dtrain, netinit, 2)

for t in range(T):
shuffled_indices = np.random.permutation(range(N))
for l in range(NB):

minibatch_indices = shuffled_indices[B*l:min(B*(l+1), N)]

COMPLETE TO UPDATE NET

y = forwardprop_shallow(x, net)

COMPLETE TO DISPLAY LOSS AND PERFS

return net

netminibatch = backprop_minibatch_shallow(xtrain, dtrain, netinit, 5, B=100)

Hint: use integer array indexing.

21. Run backprop minibatch shallow for 5 epochs. Compare the performance of this new network on
the testing dataset.

8

def backprop_minibatch_shallow(x, d, net, T, B=100, gamma=.05):
 N = x.shape[1]
 NB = int((N+B-1)/B)
 lbl = onehot2label(d)
 for t in range(T):
 shuffled_indices = np.random.permutation(range(N))
 for l in range(NB):
 minibatch_indices = shuffled_indices[B*l:min(B*(l+1), N)]
 COMPLETE TO UPDATE NET
 y = forwardprop_shallow(x, net)
 COMPLETE TO DISPLAY LOSS AND PERFS
 return net

netminibatch = backprop_minibatch_shallow(xtrain, dtrain, netinit, 5, B=100)

