
ECE 285 – MLIP – Project A
Image Captioning

Written by Raghav Kalayanasundaram Subramanian. Last Updated on October 22, 2019.

The goal of this project is to automatically describe the content of an image. To accomplish this,
we would need to identity one/multiple objects in the image, the way these relate to each other and
any attributes or activities they are involved in. This extracted semantic knowledge is stored in a fixed
length vector representation, known as an embedding. The embedding is used to generate a sentence in a
known target language T . With recent advancements in Deep learning based models for Computer Vision
and Natural Language Processing tasks, it has become easier to connect vision and language to build
models that help with scene understanding. One example of image captioning is the Microsoft caption bot .

Note that additional information may be posted on Piazza by the Instructor or the TAs.
This document is also subject to be updated. Most recent instructions will always prevail
over the older ones. So look at the posting/updating dates and make sure to stay updated.

1 Image Captioning

Figure 1: Image Captioning models with a Encoder-Decoder Framework

Image Captioning is the process of generating a textual description from an Image. With deep
learning approaches to image captioning, semantic understanding across image data has increased.
Most of the recent success in Image Captioning is derived from Deep learning models that adopt an
encoder-decoder framework. The encoder-decoder framework was derived from the domain of machine
translation, where the idea is to convert speech/text from a given language S to a target language T . For
Image captioning, a convolutional neural network(CNN) is used as the encoder, to obtain a rich vectorial
representation of the image with region-based visual features. This representation is fed to the decoder,
a recurrent neural network (RNN) based caption decoder that iteratively generates output caption in
natural language sentences.

2 Background

2.1 Recurrent neural networks (RNNs)

A recurrent neural network can be thought of as multiple copies of the same network, each passing a
message to a successor. The core reason that recurrent nets are more exciting is that they allow us to

1

https://www.captionbot.ai/

operate over sequences of vectors: Sequences in the input, the output, or in the most general case both.

Figure 2: Recurrent Neural Networks

Each rectangle is a tensor and arrows represent functions (e.g., matrix multiplications). Input vectors
are in red, output vectors are in blue and green vectors hold the RNN’s state (more on this soon). From
left to right:

1. Vanilla mode of processing without RNN, from fixed-sized input to fixed-sized output (e.g., image
classification).

2. Sequence output (e.g., image captioning takes an image and outputs a sentence of words).

3. Sequence input (e.g., sentiment analysis where a given sentence is classified as expressing positive
or negative sentiment).

4. Sequence input and sequence output (e.g., Machine Translation: an RNN reads a sentence in English
and then outputs a sentence in French).

5. Synced sequence input and output (e.g., video classification where we wish to label each frame of
the video).

2.2 Long Short Term Memory(LSTMs)

Long Short Term Memory networks (LSTMs) are special RNNs, capable of learning long-term dependen-
cies. RNNs struggle with remembering information for a very long time and have the problem of vanishing
and exploding gradients, which results in complexity during training. LSTMs use structures called gates
to regulate the flow of information to memory cells, which encode the inputs observed at every time step
till the current step. Gates are usually composed of a sigmoid layer with an output between 0 to 1, with 0
representing ”no information through” and 1 representing ”let all information through”. There are three
gates: Input (i), Output (o) and Forget (f) gates used to control if new input can be read, new cell value
can be given as output, and whether the cell state can be forgotten/has to be retained. Let σ represent

2

the sigmoid function and h represent the tanh function, and let � represent the element-wise product
between two matrices. Also, assume that Wij represents trained parameters as part of the LSTM.

Figure 3: LSTMs

it = σ(Wixxt +Wimmt−1) (1)

ft = σ(Wfxxt +Wfmmt−1) (2)

ot = σ(Woxxt +Wommt−1) (3)

ct = ft � ct−1 + it � h(Wcxxt +Wcmmt−1) (4)

mt = ot � ct (5)

There are several other variants to LSTMs such as the Gated Recurrent Unit (GRU), Depth Gated
RNNs, Clockwork RNNs etc. but these overall they help learn long term dependencies using different
approaches.

Please visit http://colah.github.io/posts/2015-08-Understanding-LSTMs/ for more under-
standing of RNN and LSTM Networks or refer to Chapter 5.

3

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

3 Models

3.1 Show and Tell

3.1.1 Overview

This paper showed that we get State of the Art (SOTA) results when we directly maximize the probability
of the correct description given the Image. Assuming that the Image is represented by I, θ denotes the
parameters of our model and S is the correct transcription, we can find optimal parameters θ

′
for the

model such that:-

θ
′

= argmax
θ

∑
(I,S)

log(p(S | I; θ)) (6)

To simplify the above expression, we can remove θ for convenience. Assuming that N is the length of
this sentence:-

log(p(S | I; θ)) = log(p(S|I)) =

i=N∑
t=0

log(p(St | I, S0, S1....St−1) (7)

As you can see, the sum of log probabilities is optimized here over the training set. The probability
of every word St, given that that were generated before it are St−1, ...S2, S1 is summed here.

The LSTM model described in Section 2.2 is used here. This model provides output mt that goes
through a softmax layer, and gives us pt+1 - a probability distribution over all words in the dictionary.
The best next word is selected and used as part of the caption.

pt+1 = Softmax(mt) (8)

3.1.2 Model

Figure 4: Show and Tell model

The Convolutional neural network used here is the GoogleNet. The LSTM predicts each word of the
sentence from the Image Embedding, and it is useful to create a copy of the LSTM the image, for each
sentence word. All LSTMs in the above image have same parameters, and output of one LSTM is the
input of the next. Therefore, if we assume that I is the input image, and S=(S0, S1,SN) represents

4

the caption where S0 and SN are represented by a special start and stop token:

CNN Embedding is the initial state of the first LSTM

x−1 = CNN(I) (9)

Use same word Embedding We

xt = WeSt, t ∈ 0, 1, 2..., N − 1 (10)

Probability is given by output of last LSTM

pt+1 = LSTM(xt), t ∈ 0, 1, 2..., N − 1 (11)

We only use the Image I once here, and the word embedding We is the same for all t, thus mapping
words and the image to the same space. The word embedding vectors here are independent of size of
dictionary as opposed to a one hot embedding, where length of the word is the size of the dictionary and
these can be jointly trained with the model.

3.1.3 Loss Function

Loss function used here is the negative log likelihood of correct word at each step and loss is minimized by
using stochastic gradient descent with fixed learning rate, random weight initialization and no momentum.

LI,S = −
N∑
t=1

log pt(St) (12)

3.1.4 Inference

As for approaches to generate a sentence, we can use either of the below:-

� Sampling:-
First word is sampled according to output p1, and the corresponding embedding is provided as input
to sample p2 and so on, recursively till output word is special stop token or maximum length of
sentence is reached

� BeamSearch:-
Iteratively consider best set B of size k, containing best sentences up to time t as candidates for
generating sentences of size t+ 1 and continue process recursively. Beam search technique was used
with beam size of 20 to approximate S as :-

S = argmax
S′

p(S
′ | I), S′ ∈ B (13)

3.2 Show, Attend and Tell

3.2.1 Overview

This paper is based on the concept of attention to create a model that describes content of images. Here,
the same encoder decoder framework used in Show and Tell is retained but with the attention framework,
latent alignments are learnt from scratch to have the model attend to abstract concepts. Two variants
of attention, namely Stochastic and Deterministic Attention are used here with difference in how the φ

5

Figure 5: Show Attend and Tell model

function is defined.

Attention is a pluggable model that can be seamlessly inserted to remarkable improve caption quality.
The concept of attention stems from the fact that nets considered every pixel in an Image as an input
for the Encoder stage, and valued all of these equally. Attention mechanism broke this construct but
selecting an arbitrary discrete portion of the image to use. This is analogous to the fact that we see
images as a whole, our ”attention” is focused on only a portion of the image.

Figure 6: Hard (top) and Soft (bottom) Attention over time

3.2.2 Encoder

The Convolutional Encoder takes an image and generates a caption y encoded as a sequence of 1-of-K
encoded words. If C is the length of the caption and K is the size of the vocabulary,

y = {y1, y2..., yc}, yi ∈ RK (14)

We use a convolutional neural network to extract a set of L feature vectors, each of which is a D-
dimensional representation corresponding to a part of the image and these are referred to as Annotation
features. Features are extracted from a convolutional layer instead of a fully connected layer, to focus on
parts of image and sub-select feature vectors.

a = {a1, a2..., aL}, ai ∈ RD (15)

3.2.3 Decoder

The decoder used here is an LSTM too, but the notation and variation used is different.
Let’s use T(s,t) to denote a simple affine transform. Assume it, ft, ot, ct are input, forget, memory,

output and hidden states of LSTM, vector ẑt ∈ RD as context vector and E ∈ Rmxk as embedding
matrix, where m is embedding dimension and n is LSTM dimension. σ and � are logistic sigmoid and
element-wise multiplication functions like before.

6

Figure 7: Show Attend and Tell model - LSTM

it
ft
ot
gt

 =

σ
σ
σ

tanh

TD+m+n,n

Eyt−1ht−1
ẑt

 (16)

ct = ft � ct−1 + it � gt (17)

ht = ot � tanh(ct) (18)

ẑt is a representation of relevant part of input image at time t. We define an attention mechanism φ
that computes ẑt using ai, where i=1, 2, 3.....L using

ẑt = φ(ai, αi) (19)

where αi is the weight of each annotation vector ai, computed by our attention model fatt . Also, the
value of αi and hidden state varies as words in the caption get generated as

eti = fatt(ai, ht−1) (20)

3.3 Stochastic ”Hard” Attention

Let st be the location in the image where the model focuses attention while generating the tth word.
Then, we can define st,i as an indicator 1-hot variable such that,

st,i =

{
1, visual features extracted at ith location
0, otherwise

}
(21)

We can view ẑt as random variable and assign a multinouilli distribution parameterized by αi. and
define :

7

p(s(t,i) = 1 | sj<t, a) = αt,i (22)

ẑt =
∑
i

st,iai (23)

Using this, if we define Ls as a new objective function such that Ls = log(p(y | a), and this function
is a variational lower bound on marginal log likelihood of observing a sequence of words given image
features. Using rule of chain rule and marginalization of probabilities, we can simplify Ls, and partially
differentiate this with respect to model parameters to get the hard attention equation by maximizing the
variational lower bound. This is equivalent to the REINFORCE learning rule, where reward for attention
choosing actions is a real value proportional to log likelihood of target sentence. This is hence called hard
attention, because we make a hard choice at every point, sampling ai based on a multinouilli distribution
parameterized by α.

3.4 Deterministic ”Soft” Attention

Instead of sampling attention location st like in Hard Attention, we can take the expectation of context
vector ẑt directly as:-

Ep(st|a) | ẑt =

L∑
i=1

αt,iai (24)

Soft Attention corresponds to feeding a soft α weighted context into the system. The model is smooth
and differentiable so end-end learning is done using standard back-propagation. Here, we optimize the
marginal likelihood under attention location random variable st. Overall, expectation of output can be
induced by feedforward propagation with expected context vector E[ẑt]. This model predicts a scalar β
from previous hidden state ht−1 at each time step such that φai, αi = β

∑L
i αiai where βt is σ(fβ(ht−1)).

All the attention weights αti sum to 1 as they are the output of a softmax layer, and these are used to
assign more importance to sections of the image. Negative log likelihood is used to train the model with
a penalty factor here.

3.5 Training

Soft and Hard attention model are trained using stochastic gradient descent using adaptive learning rate
algorithms.

4 Results

Figure 8: Show and Tell Results

8

Figure 9: Show Attend and Tell Results

5 Dataset

Several datasets have been used for Image captioning and these consist of images and sentences in English
describing these images. For this project, you are expected to use the MS COCO (Microsoft Common
Objects in Context dataset). The MS COCO dataset is a large scale object detection, segmentation and
captioning dataset and it has 5 captions per image. The images in this dataset have certain objects,
colors, animals or people with distinguishing characteristics. You can access the dataset here.

6 Evaluation Metric

The most well-recognized evaluation metric for Image captioning is Human Evaluation. There are several
conventional metrics such as BLEU, METEOR, ROUGE-L and CIDER and these have been used in
Image captioning competitions to benchmark results along with human evaluation. Often machine
translation metrics are used for image captioning evaluation, because we compare one/more than one
caption against the generated caption.

BLEU score works by counting matching n-grams in candidate translation to n-grams in reference
text. METEOR is based on the harmonic mean of unigram precision and recall between translation and
reference text, with recall carrying a higher weight. ROUGE-L score works by using longest common
subsequence in sequence n-grams to measure long matching sequence of words and provides an F-score
using LCS-based precision and recall metrics. CIDER score is computed using average cosine similarity
between sentences, which accounts for both precision and recall.

Evaluation can be done using the instructions and evaluation code, as detailed under this page. Ground
truth captions and Image captioning model output captions can be compared using these metrics.

7 Guidelines

� You can pick any method of your choice by looking at the papers and implement it and try to get
decent results.

� You can also make use of any pre-trained models and fine-tune them.

� After you get decent results by implementing an existing technique, you can try out any novel
modifications in the method to get improved results to maximize your project grade

� Before selecting a method, please find out how long does it take for the network to train if you
implement it.

� Towards the end of the quarter, the DSMLP cluster will become very busy, slow at times and there
might be connectivity issues. Please keep these things in mind and start early and also explore
other alternatives like google co-lab (12 hours free GPU) etc.

9

http://cocodataset.org
http://cocodataset.org/#captions-eval

� You are encouraged to implement classes similar to ones introduced in Assignment 3 (nntools.py)
to structure and manage your project. Make sure you use checkpoints to save your model after
every epoch so as to easily resume training in case of any issues.

8 Deliverables

You will have to provide the following

1. A 10 page final report:

� 10 pages MAX including figures, tables and bibliography.

� One column, font size: 10 points minimum, PDF format.

� Use of Latex highly recommended (e.g., NIPS template).

� Quality of figures matter (Graph without caption or legend is void.)

� The report should contain at least the following:

– Introduction. What is the targeted task? What are the challenges?

– Description of the method: algorithm, architecture, equations, etc.

– Experimental setting: dataset, training parameters, validation and testing procedure (data
split, evolution of loss with number of iterations etc.)

– Results: figures, tables, comparisons, successful cases and failures.

– Discussion: What did you learn? What were the difficulties? What could be improved?

– Bibliography.

2. Link to a Git repository (such as GitHub, BitBucket, etc) containing at least:

� Python codes (using Python 3). You can use PyTorch, TensorFlow, Keras, etc.

� A jupyter notebook file to rerun the training (if any),

→ We will look at it but we will probably not run this code (running time is not restricted).

� Jupyter notebook file for demonstration,

→ We will run this on UCSD DSMLP (running time 3min max).

This is a demo that must produce at least one illustration showing how well your model
solved the target task. For example, if your task is classification, this notebook can just load
one single testing image, load the learned model, display the image, and print the predicted
class label. This notebook does not have to reproduce all experiments/illustrations of the
report. This does not have to evaluate your model on a large testing set.

� As many jupyter notebook file(s) for whatever experiments (optional but recommended)

→ We will probably not run these codes, but we may (running time is not restricted).

These notebooks can be used to reproduce any of the experiments described in the report,
to evaluate your model on a large testing set, etc.

� Data: learned networks, assets, . . . (5Gb max)

� README file describing:

– the organization of the code (all of the above), and

– if any packages need to be pip installed.

– Example:

10

https://nips.cc/Conferences/2018/PaperInformation/StyleFiles

Description

===========

This is project FOO developed by team BAR composed of John Doe, ...

Requirements

============

Install package 'imageio' as follow:

$ pip install --user imageio

Code organization

=================

demo.ipynb -- Run a demo of our code (reproduces Figure 3 of our report)

train.ipynb -- Run the training of our model (as described in Section 2)

attack.ipynb -- Run the adversarial attack as described in Section 3

code/backprop.py -- Module implementing backprop

code/visu.py -- Module for visualizing our dataset

assets/model.dat -- Our model trained as described in Section 4

9 Grading and submission

The grading policy and submission procedure will be detailed later.

11

Description
===========
This is project FOO developed by team BAR composed of John Doe, ...

Requirements
============
Install package 'imageio' as follow:

 pip install --user imageio

Code organization
=================
demo.ipynb -- Run a demo of our code (reproduces Figure 3 of our report)
train.ipynb -- Run the training of our model (as described in Section 2)
attack.ipynb -- Run the adversarial attack as described in Section 3
code/backprop.py -- Module implementing backprop
code/visu.py -- Module for visualizing our dataset
assets/model.dat -- Our model trained as described in Section 4

