
ECE 285 – MLIP – Project C
Multi-Object detection using Deep

Learning
Written by Abhilash Kasarla and Anurag Paul. Last updated on October 22, 2019.

The goal of this project is to achieve multi-object detection using Deep Learning methods. With
recent advancements in Deep Learning-based computer vision models, object detection applications are
easier to develop than ever before. In addition, with current approaches focusing on full end-to-end
pipelines, performance has also improved significantly, enabling real-time use cases.

Note that additional information may be posted on Piazza by the Instructor or the TAs.
This document is also subject to be updated. Most recent instructions will always prevail
over the older ones. So look at the posting/updating dates and make sure to stay updated.

1 Image Classification vs. object detection

People often confuse image classification and object detection scenarios. In general, if you want to classify
an image into a certain category, you use image classification. On the other hand, if you aim to identify
the location of objects in an image, and e.g. count the number of instances of an object, you can use
object detection.

There is however some overlap between these two scenarios. If you want to classify an image into
a certain category, it could happen that the object or the characteristics that are required to perform
categorization are too small with respect to the full image. In that case, you would achieve better
performance with object detection instead of image classification even if you are not interested in the
exact location or counts of the object.

With an image classification model, you generate image features (through traditional or deep learning
methods) of the full image. These features are aggregates of the image. With object detection, you do
this on a more fine-grained, granular, regional level of the image.

1

2 Dataset

Several datasets have been released for object detection challenges. Researchers publish results of their
algorithms applied to these challenges. Specific performance metrics have been developed to take into
account the spatial position of the detected object and the accuracy of the predicted categories.

For this project you can use the PASCAL Visual Object Classification (PASCAL VOC) dataset. This
is a well-known dataset for object detection, classification, segmentation of objects and so on. There are
8 different challenges spanning from 2005 to 2012, each of them having its own specificities. There are
around 10 000 images for training and validation containing bounding boxes with objects. Although, the
PASCAL VOC dataset contains only 20 categories, it is still considered as a reference dataset in the object
detection problem. You will be using the 2012 version of the dataset for this project. You can access the
dataset at /datasets/ee285f-public/PascalVOC2012 on DSMLP cluster. The other datasets that are
generally used to train object detection models are ImageNet, Microsoft’s Common Objects in Context
(COCO), Oxford-IIIT Pet etc.

3 Evaluation metric

The most common evaluation metric that is used in object recognition tasks is ’mAP’, which stands for
’mean average precision’. It is a number from 0 to 100 and higher values are typically better, but its value
is different from the accuracy metric in classification.

Each bounding box will have a score associated (likelihood of the box containing an object). Based
on the predictions a precision-recall curve (PR curve) is computed for each class by varying the score
threshold. The average precision (AP) is the area under the PR curve. First the AP is computed for each
class, and then averaged over the different classes to get mAP. The mAP metric avoids having extreme
specialization in few classes and thus weak performances in others.

Note that a detection is a true positive if it has an ’intersection over union’ (IoU or overlap) with
the ground-truth box greater than some threshold (usually 0.5). Instead of using mAP we typically use
mAP@0.5 or mAP@0.25 to refer to the IoU that was used.

4 Methods

We will review some of the famous object detection algorithms in this section to give you a feel of how
to approach the problem. Then you are free to mix and match approaches or try out a novel method to
solve this problem.

2

Region-based Convolutional Neural Network (R-CNN) The first models intuitively begin with
the region search and then perform the classification. In R-CNN, the selective search method developed
by J.R.R. Uijlings et al. (2012) is an alternative to exhaustive search in an image to capture object
location. It initializes small regions in an image and merges them with a hierarchical grouping. Thus, the
final group is a box containing the entire image. The detected regions are merged according to a variety of
color spaces and similarity metrics. The output is a few number of region proposals which could contain
an object by merging small regions.

The R-CNN model (R. Girshick et al., 2014) combines the selective search method to detect region
proposals and deep learning to find out the object in these regions. Each region proposal is resized to
match the input of a CNN from which we extract a 4096-dimension vector of features. The features vector
is fed into multiple classifiers to produce probabilities to belong to each class. Each one of these classes
has a SVM classifier trained to infer a probability to detect this object for a given vector of features.
This vector also feeds a linear regressor to adapt the shapes of the bounding box for a region proposal
and thus reduce localization errors. The best R-CNNs models have achieved a 62.4% mAP score over the
PASCAL VOC 2012 dataset and a 31.4% mAP score over the 2013 ImageNet dataset.

3

http://www.huppelen.nl/publications/selectiveSearchDraft.pdf

Fast Region-based Convolutional Network (Fast R-CNN) The purpose of the Fast Region-based
Convolutional Network (Fast R-CNN) developed by R. Girshick (2015) is to reduce the time consumption
related to the high number of models necessary to analyze all region proposals.

A main CNN with multiple convolutional layers is taking the entire image as input instead of using a
CNN for each region proposals (R-CNN). Region of Interests (RoIs) are detected with the selective search
method applied on the produced feature maps. Formally, the feature maps size is reduced using a RoI
pooling layer to get valid Region of Interests with fixed height and width as hyperparameters. Each RoI
layer feeds fully-connected layers creating a features vector. The vector is used to predict the observed
object with a SoftMax classifier and to adapt bounding box localizations with a linear regressor.

(*Also refer to the chapter 5 of lecture slides)

Faster Region-based Convolutional Network (Faster R-CNN) Region proposals detected with
the selective search method were still necessary in the previous model, which is computationally expen-

4

https://arxiv.org/pdf/1504.08083.pdf

sive. S. Ren et al. (2016) have introduced Region Proposal Network (RPN) to directly generate region
proposals, predict bounding boxes and detect objects. The Faster Region-based Convolutional Network
(Faster R-CNN) is a combination between the RPN and the Fast R-CNN model. A CNN model takes
as input the entire image and produces feature maps. A window of size 3× 3 slides all the feature maps
and outputs a features vector linked to two fully-connected layers, one for box-regression and one for
box-classification. Multiple region proposals are predicted by the fully-connected layers. A maximum of
k regions is fixed thus the output of the box-regression layer has a size of 4k (coordinates of the boxes,
their height and width) and the output of the box-classification layer a size of 2k (“objectness” scores to
detect an object or not in the box). The k region proposals detected by the sliding window are called
anchors. When the anchor boxes are detected, they are selected by applying a threshold over the “ob-

5

https://arxiv.org/pdf/1506.01497.pdf

jectness” score to keep only the relevant boxes. These anchor boxes and the feature maps computed by
the initial CNN model feeds a Fast R-CNN model.

Faster R-CNN uses RPN to avoid the selective search method, it accelerates the training and testing
processes, and improve the performances. The RPN uses a pre-trained model over the ImageNet dataset
for classification and it is fine-tuned on the PASCAL VOC dataset. Then the generated region proposals
with anchor boxes are used to train the Fast R-CNN. This process is iterative.

Region-based Fully Convolutional Network (R-FCN) Fast and Faster R-CNN methodologies
consist in detecting region proposals and recognize an object in each region. The Region-based Fully
Convolutional Network (R-FCN) released by J. Dai et al. (2016) is a model with only convolutional layers
allowing complete backpropagation for training and inference. The authors have merged the two basic
steps in a single model to take into account simultaneously the object detection (location invariant) and
its position (location variant).

A ResNet-101 model takes the initial image as input. The last layer outputs feature maps, each one is
specialized in the detection of a category at some location. For example, one feature map is specialized in
the detection of a cat, another one in a banana and so on. Such feature maps are called position-sensitive
score maps because they take into account the spatial localization of a particular object. It consists of
k × k × (C + 1) score maps where k is the size of the score map, and C the number of classes. All these
maps form the score bank. Basically, we create patches that can recognize part of an object. For example,
for k=3, we can recognize 3x3 parts of an object.

In parallel, we need to run a RPN to generate Region of Interest (RoI). Finally, we cut each RoI in
bins and we check them against the score bank. If enough of these parts are activated, then the patch
vote ’yes’, I recognized the object.

You look only once (YOLO) The YOLO model (J. Redmon et al., 2016) directly predicts bounding
boxes and class probabilities with a single network in a single evaluation. The simplicity of the YOLO
model allows real-time predictions.

Initially, the model takes an image as input. It divides it into an SxS grid. Each cell of this grid
predicts B bounding boxes with a confidence score. This confidence is simply the probability to detect
the object multiply by the IoU between the predicted and the ground truth boxes.

The CNN used is inspired by the GoogLeNet model introducing the inception modules. The network
has 24 convolutional layers followed by 2 fully-connected layers. Reduction layers with 1x1 filters followed
by 3x3 convolutional layers replace the initial inception modules. The Fast YOLO model is a lighter

6

https://arxiv.org/pdf/1605.06409.pdf
https://arxiv.org/pdf/1506.02640.pdf

version with only 9 convolutional layers and fewer number of filters. Most of the convolutional layers
are pretrained using the ImageNet dataset with classification. Four convolutional layers followed by two
fully-connected layers are added to the previous network and it is entirely retrained with the 2007 and
2012 PASCAL VOC datasets.

The final layer outputs a S × S × (C + 5B) tensor corresponding to the predictions for each cell of
the grid. C is the number of estimated probabilities for each class. B is the fixed number of anchor boxes
per cell, each of these boxes being related to 4 coordinates (coordinates of the center of the box, width
and height) and a confidence value.

With the previous models, the predicted bounding boxes often contained an object. The YOLO model
however predicts a high number of bounding boxes. Thus there are a lot of bounding boxes without any
object. The Non-Maximum Suppression (NMS) method is applied at the end of the network. It consists
in merging highly-overlapping bounding boxes of a same object into a single one. The authors noticed
that there are still few false positive detected.

7

Single-Shot Detector (SSD) Similarly to the YOLO model, W. Liu et al. (2016) have developed a
Single-Shot Detector (SSD) to predict all at once the bounding boxes and the class probabilities with a
end-to-end CNN architecture.

The model takes an image as input which passes through multiple convolutional layers with different
sizes of filter (10x10, 5x5 and 3x3). Feature maps from convolutional layers at different position of the
network are used to predict the bounding boxes. They are processed by specific convolutional layers with
3x3 filters called extra feature layers to produce a set of bounding boxes similar to the anchor boxes of
the Fast R-CNN.

Each box has 4 parameters: the coordinates of the center, the width and the height. At the same
time, it produces a vector of probabilities corresponding to the confidence over each class of object.

The Non-Maximum Suppression method is also used at the end of the SSD model to keep the most
relevant bounding boxes. The Hard-Negative Mining (HNM) is then used because a lot of negative boxes

8

https://arxiv.org/pdf/1512.02325.pdf

are still predicted. It consists in selecting only a subpart of these boxes during the training. The boxes
are ordered by confidence and the top is selected depending on the ratio between the negative and the
positive which is at most 1/3.

Anchor Free Object-Detection Most of the methods presented before use some sort of anchor for
localizing and detecting objects. Another class of single-stage object detectors is based on key-point
detection, and predicting a class heat-map and directly predict box corner-points or height-width. Some
of the important papers in this domain are:

1. CornerNet introduces a key-point based mechanism for object detection. An image is passed through
a backbone network specially designed for key-point detection like a stacked-hourglass network and
the output is then passed through a corner pooling module. CornerPooling finds maximum along the
border and helps in getting features along the border of the objects to the corner points. Thereafter,
several sub-networks help in predicting heat-maps, embeddings and offsets for top-left and bottom-
right corners. Top k top-left and bottom-right corners are selected based on score and then matched
based on minimizing embedding distance and then a pair of top-left and bottom-right points gives
a bounding box.

2. Law et.al. in CornerNet-Lite present two networks CornerNet-Saccade which uses attention maps
to improve prediction accuracy and CornerNet-Squeeze which uses a light- weight Squeeze hourglass
backbone which helps in significantly lowering the inference time. The squeeze hourglass replaces
all residual blocks with fire module inspired from SqueezeNet.

3. Zhou et.al. in Object as points introduce a very simple mechanism for object detection. They also
use a keypoint detection backbone like stacked hourglass or Deep layer Aggregation (DLA-34) and
then use the features to predict a heat-map with as many channels as classes. Each point in the
heat-map serve as a potential centre for an object. They predict height-width and offsets for each
of these centre-points and use them to generate bounding boxes.

4. Kong et.al. in Foveabox use Resnet 50 or Resnet 101 as backbones and then use a feature-pyramid
network to get bounding box predictions at different scales. Here, the point on the heat-map is
only used to give score for that point belonging to that class, correspondingly they predict top-left
and bottom-right corners for each point on the heat-map. This is a simplification over CornerNet
where embeddings are used to match top-left and bottom-right points leading at times to incorrect
matches.

Others There are several other techniques like YOLO9000, YOLOv2, Neural Architecture Search Net
(NASNet), Mask Region-based Convolutional Network (Mask R-CNN), YOLOv3

5 Additional Information

mmdetection is an open- source platform for object detection which provides a modular framework for
designing object detection models in pytorch. A large number of recent papers are already implemented
in it or are implemented as forks of this repository. As a part of your project, you can extend the code
of this repository, create new models using different components of different papers and experiment with
novel ideas by using this repository as base.

5.1 Setup

Clone https://github.com/open-mmlab/mmdetection and follow instructions on INSTALL.md.

9

https://arxiv.org/abs/1808.01244
https://arxiv.org/abs/1904.08900
https://arxiv.org/abs/1904.07850
https://arxiv.org/abs/1904.03797
https://arxiv.org/pdf/1612.08242.pdf
https://arxiv.org/pdf/1611.01578.pdf
https://arxiv.org/pdf/1611.01578.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://pjreddie.com/media/files/papers/YOLOv3.pdf
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection/blob/master/docs/INSTALL.md

5.2 Dataset

In order to use your own dataset, you would have to implement a class that extends class CustomDataset.
More details can be found in GETTING STARTED.md.

5.3 Training

Complete models can be specified with details on data augmentation and testing methodology in a config
file. For examples, you can look at configs. You can train using

python tools/train.py ${config_file}

5.4 Testing

For testing, you can implement your own evaluation code and add it to the tools/test.py. Testing is as
easy as training and can be done as:

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval
${EVAL_METRICS}]

6 Guidelines

� You can pick any method of your choice and implement it and try to get decent results.

� You can also focus on improving the inference speed and building a more accurate real-time object
detector.

� You can also make use of any pre-trained models and fine-tune them.

� After you get decent results by implementing an existing technique, you can try out any novel
modifications in the method to get improved results to maximize your project grade.

� Always remember the main motto is to learn, there are many freely available codes online to do
this, but you should write your own code.

� Before selecting a method, please find out how long does it take for the network to train if you
implement it.

� Towards the end of the quarter, the DSMLP cluster will become very busy, slow at times and there
might be connectivity issues. Please keep these things in mind and start early and also explore
other alternatives like google co-lab (12 hours free GPU) etc.

� You are encouraged to implement classes similar to ones introduced in Assignment 3 (nntools.py)
to structure and manage your project. Make sure you use checkpoints to save your model after
every epoch so as to easily resume training in case of any issues.

7 Deliverables

You will have to provide the following

1. A 10 page final report:

10

python tools/train.py ${config_file}

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]

https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/custom.py
https://github.com/open-mmlab/mmdetection/blob/master/docs/GETTING_STARTED.md#how-to
https://github.com/open-mmlab/mmdetection/tree/master/configs

� 10 pages MAX including figures, tables and bibliography.

� One column, font size: 10 points minimum, PDF format.

� Use of Latex highly recommended (e.g., NIPS template).

� Quality of figures matter (Graph without caption or legend is void.)

� The report should contain at least the following:

– Introduction. What is the targeted task? What are the challenges?

– Description of the method: algorithm, architecture, equations, etc.

– Experimental setting: dataset, training parameters, validation and testing procedure (data
split, evolution of loss with number of iterations etc.)

– Results: figures, tables, comparisons, successful cases and failures.

– Discussion: What did you learn? What were the difficulties? What could be improved?

– Bibliography.

2. Link to a Git repository (such as GitHub, BitBucket, etc) containing at least:

� Python codes (using Python 3). You can use PyTorch, TensorFlow, Keras, etc.

� A jupyter notebook file to rerun the training (if any),

→ We will look at it but we will probably not run this code (running time is not restricted).

� Jupyter notebook file for demonstration,

→ We will run this on UCSD DSMLP (running time 3min max).

This is a demo that must produce at least one illustration showing how well your model
solved the target task. For example, if your task is classification, this notebook can just load
one single testing image, load the learned model, display the image, and print the predicted
class label. This notebook does not have to reproduce all experiments/illustrations of the
report. This does not have to evaluate your model on a large testing set.

� As many jupyter notebook file(s) for whatever experiments (optional but recommended)

→ We will probably not run these codes, but we may (running time is not restricted).

These notebooks can be used to reproduce any of the experiments described in the report,
to evaluate your model on a large testing set, etc.

� Data: learned networks, assets, . . . (5Gb max)

� README file describing:

– the organization of the code (all of the above), and

– if any packages need to be pip installed.

– Example:

Description

===========

This is project FOO developed by team BAR composed of John Doe, ...

Requirements

============

Install package 'imageio' as follow:

$ pip install --user imageio

11

https://nips.cc/Conferences/2018/PaperInformation/StyleFiles

Code organization

=================

demo.ipynb -- Run a demo of our code (reproduces Figure 3 of our report)

train.ipynb -- Run the training of our model (as described in Section 2)

attack.ipynb -- Run the adversarial attack as described in Section 3

code/backprop.py -- Module implementing backprop

code/visu.py -- Module for visualizing our dataset

assets/model.dat -- Our model trained as described in Section 4

8 Grading and submission

The grading policy and submission procedure will be detailed later.

12

Description
===========
This is project FOO developed by team BAR composed of John Doe, ...

Requirements
============
Install package 'imageio' as follow:

 pip install --user imageio

Code organization
=================
demo.ipynb -- Run a demo of our code (reproduces Figure 3 of our report)
train.ipynb -- Run the training of our model (as described in Section 2)
attack.ipynb -- Run the adversarial attack as described in Section 3
code/backprop.py -- Module implementing backprop
code/visu.py -- Module for visualizing our dataset
assets/model.dat -- Our model trained as described in Section 4

