
2019 KPU’s Smart IoT Workshop – Assignment 3

Transfer Learning
Written by Anurag Paul and Charles Deledalle. Last Updated on July 5, 2019.

In Assignments 1 and 2, we were focusing on classification on the MNIST Dataset. In this assignment,
we will focus on the best practices for managing a deep learning project and will use transfer learning for
solving a classification problem. You will learn to use the PyTorch’s DataLoader, and create checkpoints
to stop and restart model training.

We want to learn how to predict the species of a bird given its picture. We will be using
Caltech-UCSD Birds-200-2011 (CUB-200-2011) dataset. The dataset is located on PRP Nautilus
Portal here /kpuworkshop/birds/ and is also downloadable from http://www.vision.caltech.edu/

visipedia-data/CUB-200-2011/CUB_200_2011.tgz. It has 12,000 images of 200 bird species. We will
be working on a small subset of this dataset with 20 bird species having 743 training images and 372
images for validation. This directory contains a folder CUB 200 2011 with all the images and two files:
train.csv and val.csv. Each line of these files corresponds to a sample described by the file path of the
image, the bounding box values surrounding the bird, and the respective class label for each species from
0 to 19 (separated by commas). Given the very small size of this subset, we will rely on transfer learning
(otherwise we will be facing the curse of dimensionality).

1 Getting started

First of all, connect to PRP Nautilus Portal and start a pod

$./launch-pod.sh

Next connect to your Jupyter Notebook from your web browser (refer to Assignment 0 for more details).
Create a new notebook assignment3.ipynb and import

%matplotlib notebook

import os

import numpy as np

import torch

from torch import nn

from torch.nn import functional as F

import torch.utils.data as td

import torchvision as tv

import pandas as pd

from PIL import Image

from matplotlib import pyplot as plt

If any of the above libraries is not available, install it using

$ pip install --user <library_name>

Select the relevant device

1

./launch-pod.sh

%matplotlib notebook

import os
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
import torch.utils.data as td
import torchvision as tv
import pandas as pd
from PIL import Image
from matplotlib import pyplot as plt

pip install --user <library_name>

http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz
http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz

device = 'cuda' if torch.cuda.is_available() else 'cpu'

print(device)

For the following questions, please write your code and answers directly in your notebook. Organize
your notebook with headings, markdown and code cells (following the numbering of the questions).

2 Data Loader

In order to start training a classifier, we first need to build routines for loading the data. We will achieve
this using the data management tools provided in the package torch.utils.data.

1. Create a variable dataset root dir and make it point to the Bird dataset directory.

Advice: a good habit is to set the value of such a variable according to socket.gethostname()

and getpass.getuser(). This allows you and your collaborators to use the same piece of code on
different hosts or clusters in which data may be stored at different locations.

2. Central to torch.utils.data, is the abstract class Dataset that will be useful for managing our
training and testing data. Please refer to the documentation here https://pytorch.org/docs/

stable/data.html. Interpret and complete the following piece of code:

class BirdsDataset(td.Dataset):

def __init__(self, root_dir, mode="train", image_size=(224, 224)):

super(BirdsDataset, self).__init__()

self.image_size = image_size

self.mode = mode

self.data = pd.read_csv(os.path.join(root_dir, "%s.csv" % mode))

self.images_dir = os.path.join(root_dir, "CUB_200_2011/images")

def __len__(self):

return len(self.data)

def __repr__(self):

return "BirdsDataset(mode={}, image_size={})". \

format(self.mode, self.image_size)

def __getitem__(self, idx):

img_path = os.path.join(self.images_dir, \

self.data.iloc[idx]['file_path'])

bbox = self.data.iloc[idx][['x1', 'y1', 'x2', 'y2']]

img = Image.open(img_path).convert('RGB')
img = img.crop([bbox[0], bbox[1], bbox[2], bbox[3]])

transform = tv.transforms.Compose([

COMPLETE

])

x = transform(img)

d = self.data.iloc[idx]['class']

return x, d

2

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)

https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/data.html

def number_of_classes(self):

return self.data['class'].max() + 1

The method getitem returns the image x of index idx together with its class label d. It
crops the image according to the bounding box indicated in the csv file. Refer to https:

//pytorch.org/docs/stable/torchvision/transforms.html and complete the relevant section
to use torchvision to resize it to the size indicated by image size, convert it to a tensor and then
normalize it to the range [−1, 1].

3. Copy paste the following function

def myimshow(image, ax=plt):

image = image.to('cpu').numpy()

image = np.moveaxis(image, [0, 1, 2], [2, 0, 1])

image = (image + 1) / 2

image[image < 0] = 0

image[image > 1] = 1

h = ax.imshow(image)

ax.axis('off')

return h

Create the object train set as an instance of BirdsDataset. Sample the element with index 10.
Store it in a variable x. Use myimshow function to display the image x.

4. The main advantage of using PyTorch’s Dataset is to use its data loader mechanism with
DataLoader. Read the documentation and create train loader: the object that loads the train-
ing set and split it into shuffled mini-batches of size B=16. Use pin memory=True. What is the
advantage of using pin memory? How many mini-batches are there?

5. In a different cell, display the first image and label pair of the first four mini-batches. Re-evaluate
your cell, what do you observe?

6. Also create val set as an instance of BirdsDataset using mode=’val’. Then, create val loader

similar to train loader but without shuffle. Why do you think we need to shuffle the dataset for
training but not for validation?

3 Abstract Neural Network Model

In this section, we will use the mechanism of abstract classes and inheritance to define all the common
methods which will be shared between different deep learning models that we will build in the future
works in this course and beyond. These functionalities are provided to you in a homemade package
/kpuworkshop/nntools.py. From your terminal, create a symbolic link on this package into your work-
ing/current directory

$ ln -s /kpuworkshop/nntools.py .

Back to your Jupyter Notebook, you can now import its functions as:

import nntools as nt

3

class BirdsDataset(td.Dataset):

 def __init__(self, root_dir, mode="train", image_size=(224, 224)):
 super(BirdsDataset, self).__init__()
 self.image_size = image_size
 self.mode = mode
 self.data = pd.read_csv(os.path.join(root_dir, "%s.csv" % mode))
 self.images_dir = os.path.join(root_dir, "CUB_200_2011/images")

 def __len__(self):
 return len(self.data)

 def __repr__(self):
 return "BirdsDataset(mode={}, image_size={})". \
 format(self.mode, self.image_size)

 def __getitem__(self, idx):
 img_path = os.path.join(self.images_dir, \
 self.data.iloc[idx]['file_path'])
 bbox = self.data.iloc[idx][['x1', 'y1', 'x2', 'y2']]
 img = Image.open(img_path).convert('RGB')
 img = img.crop([bbox[0], bbox[1], bbox[2], bbox[3]])
 transform = tv.transforms.Compose([
 # COMPLETE
])
 x = transform(img)
 d = self.data.iloc[idx]['class']
 return x, d

 def number_of_classes(self):
 return self.data['class'].max() + 1

def myimshow(image, ax=plt):
 image = image.to('cpu').numpy()
 image = np.moveaxis(image, [0, 1, 2], [2, 0, 1])
 image = (image + 1) / 2
 image[image < 0] = 0
 image[image > 1] = 1
 h = ax.imshow(image)
 ax.axis('off')
 return h

ln -s /kpuworkshop/nntools.py .

https://pytorch.org/docs/stable/torchvision/transforms.html
https://pytorch.org/docs/stable/torchvision/transforms.html

A main concept introduced in nntools is the abstract class NeuralNetwork. This class describes the
general architecture and functionalities that a neural network object is expected to have. In particular
it has two methods forward and criterion used respectively to make a forward pass in the network
and compute the loss. Read its documentation by typing help(nt.NeuralNetwork) and next open
nntools.py to inspect its code. As you can observe these methods are tagged as abstract and as a result
the class is said to be abstract. Note you already used abstract classes: nn.Module and nn.Dataset.

7. Try to instantiate a neural network as net = nt.NeuralNetwork(). What do you observe?

An abstract class does not implement all of its methods and cannot be instantiated. This is because the
implementation of forward and criterion will depend on the specific type and architecture of neural
networks we will be considering. The implementation of these two methods will be done in sub-classes
following the principle of inheritance.

For instance, we can define the subclass NNClassifier that inherits from NeuralNetwork and imple-
ments the method criterion as being the cross entropy loss

class NNClassifier(nt.NeuralNetwork):

def __init__(self):

super(NNClassifier, self).__init__()

self.cross_entropy = nn.CrossEntropyLoss()

def criterion(self, y, d):

return self.cross_entropy(y, d)

Compared to NeuralNetwork, this class is more specific as it considers only neural networks that will
produce one-hot codes and that are then classifiers. Nevertheless, this class is still abstract as it does not
implement the method forward. Indeed, the method forward still depends on the specific architecture
of the classification network we will be considering.

4 VGG-16 Transfer Learning

We are going to consider a new classifier built on the principle of transfer learning from a pretrained
network. VGG (by Simonyan and Zisserman, 2014) was runner-up of the ILSVRC-2014 challenge. It is a
very popular network for transfer learning and is widely used as a feature extractor for multiple computer
vision tasks. Here, we will use the 16-layer version of the VGG with batch norm from torchvision

package (vgg16 bn). We will replace the final fully connected (FC) layer with a one specific to our task.
We will then train only this task-specific last FC layer and will keep all other layers as frozen (i.e., they
will not be trained). The main advantage of transfer learning is that we are enabling transfer of knowledge
gained by model on one task to be adapted to learn another task. It also reduces drastically the number of
parameters to learn, hence, avoiding overfitting and making the training to converge in just a few epochs.

8. In your notebook, evaluate the following

vgg = tv.models.vgg16_bn(pretrained=True)

Print the network and inspect its learnable parameters (as done in Assignment 2).

9. Copy/paste the code of NNClassifier in your notebook, and create a new subclass VGG16Transfer
that inherits from NNClassifier by completing the following:

4

import nntools as nt

class NNClassifier(nt.NeuralNetwork):

 def __init__(self):
 super(NNClassifier, self).__init__()
 self.cross_entropy = nn.CrossEntropyLoss()

 def criterion(self, y, d):
 return self.cross_entropy(y, d)

vgg = tv.models.vgg16_bn(pretrained=True)

class VGG16Transfer(NNClassifier):

def __init__(self, num_classes, fine_tuning=False):

super(VGG16Transfer, self).__init__()

vgg = tv.models.vgg16_bn(pretrained=True)

for param in vgg.parameters():

param.requires_grad = fine_tuning

self.features = vgg.features

COMPLETE

num_ftrs = vgg.classifier[6].in_features

self.classifier[6] = nn.Linear(num_ftrs, num_classes)

def forward(self, x):

COMPLETE

y = self.classifier(f)

return y

Note that fine tuning=True can be used if we were willing to retrain (fine tune) all other layers,
but this will take much more time and memory. This would also require more data (or using a very
small learning rate and carefully monitoring the loss) as the number of parameters would be much
higher, and the procedure subject to overfitting.

10. The class VGG16Transfer is no longer abstract as it implements all of the methods of its ancestors.
Create an instance of this class for a classification problem with a number of classes specified
as num classes = train set.number of classes(). Print the network and inspect its learnable
parameters.

5 Training experiment and checkpoints

The package nntools introduces another mechanism for running learning experiments. An important
aspect when running such an experiment is to regularly create checkpoints or backups of the current model,
optimization state and statistics (training loss, validation loss, accuracy, etc). In case of an unexpected
error, you need to be able to restart the computation from where it stopped and you do not want to rerun
everything from scratch. Typical reasons for your learning to stop are server disconnection/timeout, out
of memory errors, CUDA runtime errors, quota exceeded error, etc.

The computation of statistics will be delegated to the class StatsManager, that provides functionalities
to accumulate statistics from different mini batches and then aggregate/summarize the information at
the end of each epoch. Read and interpret the code of StatsManager. This class is not abstract since
it implements all of its methods. We could use an instance of this class to monitor the learning for our
classification problem. But this class is too general and then does not compute classification accuracy.
Even though the class is not abstract, we can still create a subclass by inheritance and redefine some of
its methods, this is called overloading.

11. Create a new subclass ClassificationStatsManager that inherits from StatsManager and over-
load each method in order to track the accuracy by completing the following code

class ClassificationStatsManager(nt.StatsManager):

def __init__(self):

5

class VGG16Transfer(NNClassifier):

 def __init__(self, num_classes, fine_tuning=False):
 super(VGG16Transfer, self).__init__()
 vgg = tv.models.vgg16_bn(pretrained=True)
 for param in vgg.parameters():
 param.requires_grad = fine_tuning
 self.features = vgg.features
 # COMPLETE
 num_ftrs = vgg.classifier[6].in_features
 self.classifier[6] = nn.Linear(num_ftrs, num_classes)

 def forward(self, x):
 # COMPLETE
 y = self.classifier(f)
 return y

super(ClassificationStatsManager, self).__init__()

def init(self):

super(ClassificationStatsManager, self).init()

self.running_accuracy = 0

def accumulate(self, loss, x, y, d):

super(ClassificationStatsManager, self).accumulate(loss, x, y, d)

_, l = torch.max(y, 1)

self.running_accuracy += torch.mean((l == d).float())

def summarize(self):

loss = super(ClassificationStatsManager, self).summarize()

accuracy = 100 * # COMPLETE

return {'loss': loss, 'accuracy': accuracy}

Experiments will be carried out by the class Experiment which is defined with respect to 6 inputs

� a given network, • a given optimizer, • a given training set,

� a given validation set, • a given mini batch size, • a given statistic manager.

Once instantiated, the experiment can be run for n epochs on the training set by using the method run.
The statistics at each iteration are stored as a list in the attribute history.

12. An experiment can be evaluated on the validation set by the method evaluate. Read the code of
that method and note that first self.net is set to eval mode. Read the documentation https:

//pytorch.org/docs/stable/nn.html#torch.nn.Module.eval and explain why we use this.

13. The Experiment class creates a checkpoint at each epoch and automatically restarts from the last
available checkpoint. The checkpoint will be saved into (or loaded from) the directory specified by
the optional argument output dir of the constructor. If not specified, a new directory with an
arbitrary name is created. Take time to read and interpret carefully the code of Experiment and
run the following

lr = 1e-3

net = VGG16Transfer(num_classes)

net = net.to(device)

adam = torch.optim.Adam(net.parameters(), lr=lr)

stats_manager = ClassificationStatsManager()

exp1 = nt.Experiment(net, train_set, val_set, adam, stats_manager,

output_dir="birdclass1", perform_validation_during_training=True)

Check that a directory birdclass1 has been created and inspect its content. Visualize the file
config.txt. What does the file checkpoint.pth.tar correspond to?

14. Change the learning rate to 1e-4 and re-evaluate the cell. What do you observe? Change it back
to 1e-3 and re-evaluate the cell. What do you observe? Why?

15. Copy and complete the following code running the experiment for 20 epochs

6

class ClassificationStatsManager(nt.StatsManager):

 def __init__(self):
 super(ClassificationStatsManager, self).__init__()

 def init(self):
 super(ClassificationStatsManager, self).init()
 self.running_accuracy = 0

 def accumulate(self, loss, x, y, d):
 super(ClassificationStatsManager, self).accumulate(loss, x, y, d)
 _, l = torch.max(y, 1)
 self.running_accuracy += torch.mean((l == d).float())

 def summarize(self):
 loss = super(ClassificationStatsManager, self).summarize()
 accuracy = 100 * # COMPLETE
 return {'loss': loss, 'accuracy': accuracy}

lr = 1e-3
net = VGG16Transfer(num_classes)
net = net.to(device)
adam = torch.optim.Adam(net.parameters(), lr=lr)
stats_manager = ClassificationStatsManager()
exp1 = nt.Experiment(net, train_set, val_set, adam, stats_manager,
 output_dir="birdclass1", perform_validation_during_training=True)

https://pytorch.org/docs/stable/nn.html#torch.nn.Module.eval
https://pytorch.org/docs/stable/nn.html#torch.nn.Module.eval

def plot(exp, fig, axes):

axes[0].clear()

axes[1].clear()

axes[0].plot([exp.history[k][0]['loss'] for k in range(exp.epoch)],
label="training loss")

COMPLETE

plt.tight_layout()

fig.canvas.draw()

fig, axes = plt.subplots(ncols=2, figsize=(7, 3))

exp1.run(num_epochs=20, plot=lambda exp: plot(exp, fig=fig, axes=axes))

and displaying two plots side-by-side, one showing the losses and the other showing the evolution of
accuracy over the epochs. The training should take about 8 minutes. Make sure your loss evolutions
are consistent with the ones below. If they are not so, interrupt it (Esc+i+i), check your code, delete
the output dir, and start again.

7

def plot(exp, fig, axes):
 axes[0].clear()
 axes[1].clear()
 axes[0].plot([exp.history[k][0]['loss'] for k in range(exp.epoch)],
 label="training loss")
 # COMPLETE
 plt.tight_layout()
 fig.canvas.draw()

fig, axes = plt.subplots(ncols=2, figsize=(7, 3))
exp1.run(num_epochs=20, plot=lambda exp: plot(exp, fig=fig, axes=axes))

6 ResNet18 Transfer Learning

ResNet (by He et al., 2015) is an ultra deep network with up to 152 layers which won the ILSVRC 2015
challenge. Pretrained models of ResNet are available in torchvision for 18, 34, 50, 101 and 152 layer
versions. We will be using the 18 layer version for this assignment that can be loaded as

resnet = tv.models.resnet18(pretrained=True)

16. Similar to VGG16Transfer, create a subclass Resnet18Transfer that inherits from NNClassifer

and that redefines the last FC layer.

17. Create an instance of Resnet18Transfer and create a new experiment exp2 making backups in the
directory birdclass2. Run the experiment for 20 epochs with Adam and learning rate 1e-3 using
the same function plot as before.

18. Using the method evaluate of Experiment, compare the validation performance obtained by exp1

and exp2 using respectively VGG16Transfer and Resnet18Transfer.

8

resnet = tv.models.resnet18(pretrained=True)

